
www.manaraa.com

www.manaraa.com

Pyramidal Architectures
for

Computer Vision

www.manaraa.com

ADV ANCES IN COMPUTER VISION AND
MACHINE INTELLIGENCE

Series Editor: Martin D. Levine
McGill University
Montreal. Quebec. Canada

COMPUTER VISION FOR ELECTRONICS MANUFACTURING
L. F. Pau

HUMAN ENGINEERING IN STEREOSCOPIC VIEWING DEVICES
Daniel B. Diner and Derek H. Fender

PYRAMIDAL ARCHITECTURES FOR COMPUTER VISION
Virginio Cantoni and Marco Ferretti

SIGMA: A Knowledge-Based Aerial Image Understanding System
Takashi Matsuyama and Vincent Shang-Shouq Hwang

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new
volume immediately upon publication. Volumes are billed only upon actual shipment. For further information
please contact the publisher.

www.manaraa.com

Pyramidal Architectures
for

Computer Vision

VIRGINIO CANTONI
and

MARCO FERRETTI
University of Pavia

Pavia, ltaly

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

www.manaraa.com

Llbrary of Congrass Cltllog1ng-ln-Publ1catlon Data

Canton!, V.
Pyra.!da l arch l teetures for co~puter vlslon I Vlrgln lo Canton l and

Mareo Ferrett 1.
p. c~. - - (Advanees In COMputer vlslon and aaeh l ne

Inte Illgenee)
Ineludas blb l lographlea l references and Index.
ISBN 978-1-4613-6023-0 ISBN 978-1-4615-2413-7 (eBook)
DOI 10.1007/978-1-4615-2413-7
, . Co.puter archltecture . 2. COMputer viS Ion. 1. Ferrett "

Mareo. II. Tl tle. III. Serles.
OA76 .9.A73C35 1994
006 . 4'2- -dc20

© 1994 Springer Science+Business Media New York
Originally published by Plenum Press, New York in 1994

Ali rights reserved

93- 29212
CIP

No part of this book may be reproduced, stored in a relrieval system, or transmitted
in any form or by any means, electronic, mechanical , photocopying, microfi1ming,

recording, or otherwise, without written permission from the Publisher

www.manaraa.com

To Laura, Vera, and Livio
-v.c.

To Elvira and Eleonora
-M.F.

www.manaraa.com

Preface

Computer vision deals with the problem of manipulating information contained
in large quantities of sensory data, where raw data emerge from the transducing
sensors at rates between 106 to 107 pixels per second. Conventional general­
purpose computers are unable to achieve the computation rates required to op­
erate in real time or even in near real time, so massively parallel systems have
been used since their conception in this important practical application area.

The development of massively parallel computers was initially character­
ized by efforts to reach a speedup factor equal to the number of processing
elements (linear scaling assumption). This behavior pattern can nearly be
achieved only when there is a perfect match between the computational struc­
ture or data structure and the system architecture. The theory of hierarchical
modular systems (HMSs) has shown that even a small number of hierarchical
levels can sizably increase the effectiveness of very large systems. In fact, in
the last decade several hierarchical architectures that support capabilities which
can overcome performances gained with the assumption of linear scaling have
been proposed. Of these architectures, the most commonly considered in com­
puter vision is the one based on a very large number of processing elements
(PEs) embedded in a pyramidal structure.

Pyramidal architectures supply the same image at different resolution lev­
els, thus ensuring the use of the most appropriate resolution for the operation,
task, and image at hand. Furthermore, a hierarchy is introduced by interplane
communication which allows the implementation of a general "planning" strat-

vii

www.manaraa.com

viii Preface

egy. Here the approach is to solve problems at a low spatial resolution, and
therefore with a small amount of dats!, and then to proceed to successive re­
finements until the final verification of the results at the highest resolutions
available. In this way, speedup factors greater than the number of PEs can be
obtained in the quoted low-level vision tasks, because data reduction is an
exponential function of the number of levels which have been used.

This approach has shown how a few hierarchical levels can substantially
increase the processing efficiency of systems comprising many PEs; this behav­
ior pattern has found a precise verification in various practical problems. Even
in nature several large systems, composed of a great number of elements, have
been shown to be self-organizing in a hierarchical structure, and the rules that
these large sets configure follow the theory of HMSs.

This book is split logically into three sections, which consist of Chapters
1 and 2, Chapters 3 to 8, and Chapters 9 and 10, respectively.

The first section provides the groundwork for the architectural analysis
carried out in the remainder of the book. It discusses the role of the hierarchy
in setting up complex systems and then specializes in the use of the hierarchy
in computer vision systems.

Chapter 1 reviews the theory of hierarchical modular systems, which
model the behavior of large self-organizing natural systems, such as monetary
systems, settlement distribution over a territory, and natural languages. This
theory shows that the introduction of a few hierarchical levels substantially
increases the effectiveness of such large systems. The modularity criterion is
inherited to some extent in the structure of most hierarchical architectures.

Chapter 2 discusses in depth the benefits of hierarchical strategies in the
vision domain. Essentially, the motivation for using such an approach is that
of obtaining high computational performances by processing only the relevant
image data at the right time. The behavior of the known parts of the human
vision system is used as a guideline. Its preattentive and attentive phases per­
form the basic tasks of any hierarchical processing paradigm-that is, delineat­
ing the region of interest and focusing on it for a detailed scrutiny. In computer
vision, such a paradigm is supported by ad hoc data structures that consist of
multiresolution grids, which reproduce the image in different amounts of de­
tails. The term pyramid is used to clarify the hierarchical connections between
adjacent grid layers. This chapter analyzes the alternatives for building such
representations and the possible processing strategies.

The second section more closely covers the architectural issues. It first
introduces a framework for comparing the possible solutions according to to­
pology and to its functional composition. Then it describes and discusses the

www.manaraa.com

Preface ix

actual machines and/or prototypes that can be described as pyramid architec­
tures or that have a pyramid processing mode explicitly supported in hardware.
The simulation of pyramids on other parallel systems is also covered in detail.

Chapter 3 describes all system organizations that construct a hierarchy
with a homogeneous set of processing elements. In such cases, the topology of
the interconnections is the main feature of the resulting system. The families
of hierarchical systems considered include snowflakes, stars, trees, hypernets,
and pyramids. A quantitative assessment of these hierarchies is carried out
through a set of parameters that measure the capability of the network to sustain
data exchanges among the processing elements.

Chapter 4 focuses on hierarchical machines that have already been built
(or at least fully designed) and organizes them into a taxonomy. This taxonomy
is itself a small hierarchy with two levels. The first level splits the systems
into homogeneous or heterogeneous ones according to their processing module
capability. The second is based on the means of coupling these modules and
on interconnection networks (tight-loose, compact-distributed, fixed-re­
configurable). The processing paradigm varies within the taxonomy: these in­
clude pipeline, SIMD, multi-SIMD, and MIMD systems.

Chapter 5 concentrates on the most popular hierarchical topology, the ba­
sic pyramid, and on the homogeneous, massively parallel systems that have
been proposed or at least built in prototype. When designing a pyramid struc­
ture, one may follow two approaches: the first with fine granularity, where one
processor per image pixel is conceived, and the second with coarse granularity,
where one microprocessor is associated with an image block. The former ap­
proach is the one followed in most cases, perhaps because of the expected
benefits in designing a parallel system with VLSI. This chapter offers a com­
prehensive and in-depth analysis of the actual pyramid computers that attracted
so much interest in the mid- and late-1980s.

Chapter 6 analyzes alternatives to the true pyramid computer. Specialized
hardware solutions have been proposed to achieve multiresolution processing
without resorting to these expensive parallel architectures. Pipelined systems
specializing in decimation (pyramid building) and expansion are the most effec­
tive alternative. The processing facilities of such systems offer a powerful
multiresolution environment that can be easily integrated into low-cost, applica­
tion-specific devices.

Chapter 7 addresses a more pragmatic issue. Massively parallel systems,
once a small niche in the computer processing community, have now come of
age, and commercial systems have become more and more widespread. Since
none of them adopts a pyramid topology, it is worth studying the cost of em-

www.manaraa.com

x Preface

bedding pyramids into their native structure. The mesh and the hypercube are
the two most common topologies of such commercial systems. This chapter
reviews embeddings proposed for the basic pyramids in these topologies.

Chapter 8 closes the central section of the book by analyzing heteroge­
neous hierarchical systems. The rationale for designing a hierarchical system
according to this paradigm is that it is difficult to match the computational
requirements of the various processing steps (low to high) in a vision problem
with just a single homogeneous architecture. Low-level tasks demand special­
ized hardware capable of matching the high speed of incoming data. Subse­
quent processes are best matched onto coarse-grained standard microproces­
sors. Some systems have been designed to merge the pyramid concept with this
heterogeneous structure.

The third section covers the user's point of view. Programming tools,
including languages and development tools, are notoriously the most difficult
part of a system project. With the recent advances in VLSI design, the time
required to specify, design, build, and assemble a functioning prototype is
shorter by order of magnitudes than the corresponding time to obtain a standard
compiler. However, effective use of the hierarchical system must be made pos­
sible to the "naive" end user, whose energy should only be concentrated on
the tasks, with almost no regard to the intricacies of the complex system he or
she is programming.

Chapter 9 covers the language side of this problem. Specific attempts have
been made to conjugate standard languages with the pyramid architecture. Both
the data structures and the semantics of the control operators need a revised
interpretation.

Chapter 10 faces the ultimate question of multiresolution processing. The
expected advantages of this processing strategy must be measured (both from a
theoretical computational point of view and in practical situations) and proved
to be relevant. The chapter contains a selection from the huge number of
algorithms that exploit pyramid processing in very diverse computer vision con­
texts. This overview, which does not pretend to be an exhaustive and up-to­
date tutorial on the subject, focuses on those algorithms which apply the multi­
processing strategy at its best.

Pavia, Italy

Virginio Cantoni
Marco Ferretti

www.manaraa.com

Acknowledgments

Many are the people who contributed to the effort of setting up this book.
Some kindly provided up-to-date material on their work; others simply helped
informally with suggestions. Among them, we would like to thank particularly
Dr. Angelo Buizza for his guidance through the biological aspects of human
vision, Dr. Mauro Mosconi, and our co-workers in the Computer Vision and
CAD Laboratories of Pavia University.

xi

www.manaraa.com

Contents

1. Hierarchical Architectures. 1

1.1. Introduction. 1
1.2. Theory of Hierarchical Modular Systems . 3
1.3. Self-Organizing Hierarchical Modular Systems 6

1.3.1. The Invariance Principle and the Law of Distribution. 6
1.3.2. Some Examples of HMSs in Society. 8

1.4. Hierarchical Architectures for Parallel Processing Machines . 10
References . 11

2. Hierarchical Strategies in Computer Vision Systems. 13

2.1. Introduction. 13
2.1.1. Recognition Cones 14
2.1.2. Alerting Mechanisms and Peripheral Guidance. 18

2.2. Allocation of Attention in Computer Vision Systems 24
2.2.1. Multiresolution Model Representations. 26

2.3. Multiresolution Matching. 33
2.4. Fine-to-Coarse Feature Generation . 34

2.4.1. Wavelet Representation. 35
2.4.2. Gaussian Pyramid. 41
2.4.3. Laplacian Pyramid 48
2.4.4. Haar Pyramid. . . 51

xiii

www.manaraa.com

xiv

2.4.5. Feature Pyramid .
2.5. Coarse-to-Fine Searches .
2.6. Image Flow Diagrams . .

2.6.1. Examples
2.7. General Planning Strategies
Fleferences

3. Hierarchical Homogeneous Topologies.

3.1. Introduction.
3.2. Hierarchical Paradigm
3.3. Comparison Parameters and Evaluation Criteria.
3.4. Bus-Oriented Architectures.

3.4.1. Snowflakes and Dense Snowflakes.
3.4.2. Partial and Full Stars .

3.5. Link-Oriented Architectures
3.5.1. Flegular Trees ...
3.5.2. Augmented Trees.
3.5.3. Complete Trees.
3.5.4. Pyramids ...
3.5.5. Hypernets . . .

3.6. Performance Measures.
3.7. Applicability

3.7.1. VLSI Feasibility
3.7.2. Applications ..
3.7.3. Prototypes and Machines

3.8. Conclusions .
Fleferences

4. A Taxonomy of Hierarchical Machines for Computer Vision

4.1. Paradigm for Computer Vision. . . .
4.1.1. Preprocessing
4.1.2. Intermediate-Level Processing.
4.1.3. High-Level Processing
4.1.4. Three Possible Computational Frameworks.

4.2. Taxonomy of Hierarchical Machines
4.2.1. Heterogeneous Loosely Coupled Class.
4.2.2. Heterogeneous Closely Coupled Class .

Contents

56
57
60
60
63
65

69
69
70
71
74
74
77
79
79
81
84
86
89
92
97
97
98
99

.100

.100

.103

.103

.104

.104

.105

.106

.106

.109

.110

www.manaraa.com

Contents xv

4.2.3. Homogeneous Compact Pyramid . . 110
4.2.4. Homogeneous Distributed Pyramid . 112

4.3. Conclusions. . 113
References 114

S. Compact and Distributed Pyramids . . 117

5.1. Introduction.117
5.2. Compact Pyramids. 118

5.2.1. Interconnection Topology. .119
5.2.2. Processing Element Capabilities. . 120
5.2.3. System Configuration.125
5.2.4. Compact Pyramid Prototypes .129

5.3. Distributed Pyramids. 154
5.3.1. The EGPA System. .155

5.4. Conclusions. .158
References.159

6. Pipeline Multiresolution Systems. . . .161

6.1. Introduction.161
6.2. Pyramid Vision Machine System. . 163

6.2.1. The Segmented Pipeline Architecture . 165
6.2.2. The CAIP System. . . . 167

6.3. PIPE System168
6.3.1. The PIPE Architecture168
6.3.2. Pyramid Neighbor Operations . . 170

6.4. Conclusions . . 171
References 171

7. Simulation of Pyramids on Flat Arrays and Hypercubes. .173

7.1. Introduction. 173
7.2. Pyramids and Meshes175

7.2.1. Simulation of Pyramids on Flat Arrays. .175
7.2.2. Augmented Flat Arrays 181
7.2.3. Reconfigurable Meshes Emulating Pyramids. .183

7.3. Pyramids and Hypercubes192
7.3.1. Mesh-Based Embeddings194

www.manaraa.com

xvi

7.3.2. Other Embeddings
7.3.3. Embeddings on Real Systems . . .
7.3.4. The Neighbor Addressing Scheme.

7.4. Conclusions .
References

8. Heterogeneous Hierarchical Systems.

8.1. Introduction.
8.2. Warwick Pyramid System ...

8.2.1. Structure of a Cluster. .
8.2.2. Clusters Interconnection.
8.2.3. Programming Environment

8.3. Image Understanding Architecture
8.3.1. Three-Level Hierarchy . .
8.3.2. Array Control Unit and Programming Environment.

8.4. The PASM
8.4.1. Partitionable Two-Level Hierarchy.

8.5. Array/Net Project
8.6. Conclusions .
References

9. Programming a Hierarchical Structure
9.1. Languages: An Introduction

9.1.1. Collection-Oriented Languages versus
Processor-Oriented Languages. .

9.1.2. Semantics of Parallel Constructs.
9.1.3. HCL, a Pyramid Algebra.
9.1.4. HCL and the C Language.
9.1.5. PYR-E .. .
9.1.6. PCL

9.2. Control Environment.
9.2.1. Control of Multi-SIMD Hierarchical Systems
9.2.2. Multi-SIMD Control across Resolution.
9.2.3. Multi-SIMD Control across Space.

9.3. Conclusions.
References

Contents

.199

.203

.215

.216

.216

.219

.219

.221

.222

.224

.225

.226

.226

.231

.232

.233

.236

.238

.238

.241

.241

.242

.245

.250

.257

.263

.273

.277

.278

.279

.286

.287

.288

www.manaraa.com

Contents xvii

10. Pyramidal Tools and Applications. .291

10.1. Introduction291
10.2. Complexity of Some Basic Algorithms . 292
10.3. Special Pyramids.294

10.3.1. Overlapped and Dual Pyramids. .294
10.3.2. Stochastic, Adaptive, and Custom-Made Pyramids. . 295
10.3.3. Centralization Graphs. 297

10.4. Pyramidal Techniques. 299
10.4.1. Multigrid Numerical Methods. . 299
10.4.2. Image Segmentation301
10.4.3. General Matching 308
10.4.4. Lines, Curves, and Shapes:

Description and Recognition . 309
10.4.5. Image Compression, Coding, and Transmission .315
10.4.6. Motion Analysis.316
10.4.7. Stereo Vision and Depth .324

10.5. Conclusions . 326
References 327

Index 333

www.manaraa.com

Pyramidal Architectures
for

Computer Vision

www.manaraa.com

Chapter 1

Hierarchical Architectures

The theory of hierarchical modular systems (HMSs) has shown how a paltry
number of hierarchical levels can massively increase the efficiency of very
large systems. Several large natural systems have been identified as self-or­
ganizing HMSs, including monetary systems, distribution of settlements on a
territory, natural languages (hierarchy given by letters, syllables, words, predi­
cates, clauses, sentences, and paragraphs), military hierarchies, etc. In this
chapter, the theory of HMS is briefly introduced, a few examples are described,
and hierarchical computer architectures are introduced within the framework of
the HMSs.

1.1. INTRODUCTION

The notion of a system's architecture is somewhat more than the elements
which are used and the rules for their composition. An example is the design
of arches: the set of bricks placed one next to another in a curve to form an
arch gives rise to a new capacity of supporting weights that is not given simply
by addition to the elementary property of each component: a well-structured
system comes forth, able to overstep the crude joining of the parts. Arch de­
signing points out directly this astonishing capability to bring forth new quali­
ties not directly derived from the scaling of the ingredients.

This precise aspect earned for architecture, until the Renaissance, the rep-

•

www.manaraa.com

2 Chapter 1

utation of ars regia. Its typical tools such as a pair of compasses, plumb line,
and level, became the emblems of universal order, the keys of cosmic models.
Even in Islamic culture, as can be discovered in the main buildings (and partic­
ularly in places of worship), this static paradox has been used to extremes: the
sustaining parts are minimized and multiplied, intermingling the rarefied and
delicate arches in a kaleidoscopic mode and covering larger and larger tracts.
Examples of these buildings are spread over all lands touched by Moslems,
from Spain to Sicily to Pakistan. Let us cite as a masterpiece of this kind of
architecture the Mosque of Cordoba. This very example constitutes a paradigm
which can be applied to computer vision. The technique employed in the
Mosque of Cordoba, expressed in computer terms, involves nothing other than
minimizing and multiplying elementary modules to support increasing comput­
ing demand (e.g., larger portions of the visual field). This system was indeed
applied in one of the most popular hierarchical architectures for computer vi­
sion: the compact, fine-grained pyramid.

Computer vision deals with the problem of extracting useful information
from large quantities of sensory data: raw data emerges from the transducing
sensors at rates ranging from 106 to 107 pixels per second. Conventional gener­
al-purpose computers are unable to achieve the computation rates required to
operate in real time, or even in near real time, in processing images.

The development of special-purpose architectures for computer vision has
been previously characterized by efforts to reach, for typical algorithms of the
preprocessing stages of the image arrays, a speedup factor equal to the number
of processing elements (linear scaling assumption according to Hewitt and
Lieberman I.) In this approach, maximum efficiency (Siegel et al. 2) is unity
when the ideal speedup (equal to the number of processing elements, PEs) is
reached. This behavior pattern can nearly be achieved only when there is a
perfect match between computational structure or data structure and system ar­
chitecture. 3

In recent decades, some architectures that support capabilities which over­
come the performance gained with the assumption of linear scaling were pro­
posed; among them, the most commonly considered in computer vision is
based on a very large number of PEs embedded in a pyramidal structure.

Pyramidal architectures supply the same image at different resolution lev­
els, thus ensuring the use of the most appropriate resolution for the operation,
the task, and the image at hand. Furthermore, a hierarchy is introduced by
the interplane communication, which allows the implementation of a general
"planning" strategy (Kelly4 and Tanimot05), in which the approach is to un­
dertake the solution of problems at low spatial resolution and to proceed to
successive refinements till the final verification of the results is reached at the

www.manaraa.com

Hierarchical Architectures 3

highest resolutions available. In this way speedup factors greater than the num­
ber of PEs can be obtained even in the low-level vision tasks mentioned, be­
cause data reduction is an exponential function of the number of levels that
have risen.

This approach has shown how a narrow number of hierarchical levels can
substantially increase the processing efficiency of systems composed of numer­
ous PEs; and even though this strategy has not yet been adequately formalized,
it has found precise verification in various practical problems, including object
recognition, implementation of multigrid techniques in numerical analysis, re­
laxation algorithms, matrix operations, transient simulation in electrical cir­
cuits, and topographical problems.

Even in nature several large systems, composed of a very great number of
elements, have been identified as self-organizing in a hierarchical structure, and
a theory has been developed to explain how these large sets configure them­
selves.

1.2. THEORY OF HIERARCHICAL MODULAR SYSTEMS

A hierarchical system of n levels (O:Sn:Soo) is composed of n disjoint sets
of elements. Let us call Ch the number of elements belonging to the level h
(O:sh:Sn); the total number N of elements is then

n

N= 2: Ch (1.1)
h=O

The arrangement defined by {co, C), C2, C3 , •.. , cn} is called a partition n of
the elements of the system.

Let us suppose that a real number Vh is assigned to each element of a level
h, called the value associated with that level. Hence, the total value V of the
system is

(1.2)

and the average value (v) is

(1.3)

www.manaraa.com

4 Chapter 1

The hierarchical system is called modular, and M is the module of the
system, when the following relationship holds between any pair of consecu­
tive levels:

~=M>1 Vh, (1.4)
Vh - I

in this case, vh=voMh.
A partition IIb of a hierarchical modular system is called a refinement of

a partition IIa if and only if IIb has more levels than IIa and if IIb retains all
the levels of IIa. In this case, it is easy to verify that the following relationship
holds between the modules of the two partitions:

(1.5)

where p, an integer greater than 1, corresponds to the ratio between the number
of levels:

(1.6)

Moreover, provided that the number of elements employed at each level
is always Ch <M, it is easily shown that every value if that is a multiple of Vo

and not greater than the maximum value of the system (vo[M n + I -1]) can be
obtained by only one partition IT:

(1. 7)

This result is well known and easily recognized in the numerical system theory
(e.g., decimal system); in fact, in this case the above-mentioned conditions
are satisfied.

These HMSs defined according to the aforementioned conditions retain an
invariant factor 'Y under refinement transformations: for given M, n, and p the
ratio between the number of possible partitions and the module is constant:

(1.8)

Subsequently the aforementioned properties are highlighted in a very common
case which strictly follows the HMS theory. In fact, Caianiello6 identifies sev-

www.manaraa.com

Hierarchical Architectures 5

erallarge natural systems as HMSs, among which are monetary systems. The
first problem we address is: why introduce a number of currencies, and what
are the best values to assign them? Here, the main intention is to be able to
buy goods, in a given range (1-Mv) of values with a uniform distribution and
with few tokens. The minimum number of tokens is obviously obtained when
all the values are minted (ii = 1); it is maximum (ii = [Mv + 1]/2) adopting just
one currency. It is quite evident that by introducing tokens of different values,
we obtain an ii between the quoted extremes: in particular, if the requested
values are uniformly distributed in the range I-Mv' then the higher the number
of different tokens, the lower ii can be.

It is easy to show (details of the proof can be found in Caianiello et al. 7

that the average number of tokens necessary to compose all the values from 1
to Mv is a minimum if the monetary system is modular, that is, if the values of
the tokens follow the law given in Eq. (1.4). In this case, the maximum num­
ber of tokens of each type that can occur is M - 1. Consequently, if (M - 1)/2
is the average number of tokens for each value, the average number ii for all
tokens will be

M-l
ii=n--

2
(1.9)

When working with the decimal system, a practice universally adopted, a
good module can be 10 (in effect, bank notes of value ... 1, 10, 100, 1000,
... are used in all monetary systems). Nevertheless, in practice a higher num­
ber of levels is always introduced in order to further decrease n. This refine­
ment is usually given for p = 3 (three mints for a decade ratio); that is, the most
common module is M = 3VW, to which corresponds the sequence of currencies

1,2.15,4.64, 10,21.5,46.4, 100,215,464, ...

which is usually rounded to the nearest integer at the most significant digit.
Even if a few of these values are missing in some currencies, everyone would
recognize the corresponding monetary sequence:

1,2,5, 10,20,50, 100,200,500, ...

Since it is well known, this set of currencies is suitable for satisfying the
property expressed in (1.7). Moreover, the average number of tokens needed

www.manaraa.com

6 Chapter 1

to compose the generic value in a quoted range, given in Eq. (1.9), holds as
well. For example, for the range 1-106 -1, it is 10.35 (we do not consider the
case, very common in practice, in which more than M identical tokens are
used: e.g., a coin of value 100 is often replaced by two coins of value 50).

1.3. SELF-ORGANIZING HIERARCHICAL MODULAR SYSTEMS

The systems considered belonging to the HMS family can adjust them­
selves in order to match the mandatory conditions of the external universe with
which they interact: for this reason they are called self-organizing. 8

The analysis which follows considers fixed the values Vh' associated with
the possible levels, and calculates element distribution, which only reflects the
way the system self-adjusts to external requirements.

A second assumption refers to the way in which the interaction with the
external environment is realized: let us suppose that this interaction is of a
"global" nature; i.e., the requirement is not made directly on internal distribu­
tion but can be expressed only by statistical parameters of the whole HMS,
such as management of the average value.

Under these hypotheses, two behavior patterns can be considered: a sys­
tem evolution and a system revolution. In the former case the element distribu­
tion changes, varying the partition II of the elements of the system but not
modifying the module and the number of levels. In the latter case a structural
change occurs and, under the hypothesis of modularity, a partition refinement
takes place.

In what follows, the analysis is limited to the latter case; a few comments
about the equilibrium partition, and the relationship between levels (and associ­
ated values Vh) and populations (eh) of a self-organizing HMS will be derived
at the end.

1.3.1. The Invariance Principle and the Law of Distribution

Let us consider the case, verified by several common HMSs, in which the
global average value of the elements of a system is invariant under refinement
transformations (invariance principle):

vo"'i,~"=oe~Mhlp

"'i,~"=oe~
(1.10)

where e' and e" are, respectively, the number of elements before and after the
p-refinement [see Eq. (1.5) and (1.6)].

www.manaraa.com

Hierarchical Architectures 7

We can easily check that the following relationship satisfies Eq. (1.10) (in
Ref. 7 this solution is shown to be unique):

Vh, (1.11)

and, in particular, between two consecutive levels, the ratio between the num­
ber of elements is given by

C~ == C~-l M- 1/2p Vh, (1.12)

Substituting these results in Eq. 0.10) gives the invariant average value
(v) of the system elements:

(1.13)

Note that, as expected, (v) is independent of the refinement parameter p.
In particular, when N is constant (in addition to M and (v), mentioned

before), for a given initial number of levels n and a p-refinement, the distribu­
tion law of the elements between the various levels which secures the invari­
ance principle is

(1.14)

The case p = 1 shows the distribution of a system at the "equilibrium" of
the possible refinement "evolutions" (in Caianiello6• 9 an analogy with physics
is introduced and a "thermodynamic" explanation of the distribution law is
derived). In this stable condition (a "revolution" could of course lead to an­
other stable status), no matter what the history of the system levels was, the
number of elements belonging to a level h equals the number of elements of
the level immediately below reduced by a constant factor given by the square
root of the module; from Eq. (1.12), Ch is then

v, (1.15)

in this case, ch==coM- hI2 •

Likewise, from Eq. (1.14), we can derive how N elements, on the basis
of the invariance principle, would distribute in n modular hierarchical levels:

www.manaraa.com

8 Chapter 1

(1.16)

1.3.2. Some Examples of HMSs in Society

Several examples of systems composed of millions of elements that self­
organize, following the theory of the HMSs, can be recognized in nature; in
the literature those involving humans in particular are analyzed (according to
BeckerJO) the social substructure itself follows the theory of the HMSs). A
short introduction to the most popular HMS family is given, namely monetary
systems, distribution of settlements in a territory, and natural languages.

1.3.2.1. Monetary Systems

As mentioned, monetary systems follow the theory of HMSs quite closely.
From Eqs. (1.4) and (1.15), the total value of currency Ah at a given level h is

(1.17)

This result, experimentally discovered by Hentschll by analyzing the distribu­
tion of currencies in many countries (Switzerland, France, Holland, Germany,
and the United States), holds for all countries. Caianiell08 has derived Eq.
(1.17) from the theory of HMSs and has confirmed the result for other coun­
tries. Furthermore, when this law, occasionally, does not hold, there is clear
evidence that justifies the deviation (e.g., lack of values in the sequence, typi­
cally tokens with 2 lOX; silver coins that are being withdrawn from circulation
and are so requested by coin collectors, etc.).

For example, in Figure 1.1 we show the money circulating in Italy on
December 31, 1990, precisely the total amount for each currency Ah versus the
value Vh . Note that the dispersion around the regression line (straight line),
which is close to the Hentsch law (in log-log scale: In Ah=k+0.5 In vh)' can
be easily explained. The coins in the first decade are practically obsolete, and
the last denominations are overminted in most monetary systems to support the
missing higher denominations. The deviations given by 20, 2000, 20000 lire,
not regularly minted by the "Zecca" (state mint), caused the overdistribution
of the adjacent minor denominations.

www.manaraa.com

Hierarchical Architectures 9

108

•
107 ..

~
j 106

~
]

105
Figure 1.1. Circulating money in

a
:is

Italy on December 31, 1990. De- S
nominations 5 lOx, and lOX are rep- 104

resented by squares, meanwhile de-
nominations 2 lOx, not regularly

103 minted, are represented by dia-
monds. The regression line (straight 100 101 102 103 104 105 106

line) is quite close to the Rentsch
law. Denominations

1.3.2.2. Distribution of Settlements in a Territory

In 1936, Singerl2 discovered a statistical regularity in urban settlement:
the higher the number of inhabitants, the lower the number of municipalities,
following this equation:

(1.18)

where x is the number of inhabitants, y is the number of towns with a number
of inhabitants higher than x, and ILo, ILl are coefficients that were shown by
Allenl3 to be stable over several decades.

In monetary systems the number of levels n, and the values Vh associated
with each level, are well known a priori. This is not so for a population distri­
bution over a territory, even if it is quite evident that in cities with a higher
number of inhabitants on average there is a better quality and a higher standard
of living (in terms of the quantity and quality of services in the cultural, medi­
cal, administrative, marketing, etc., area present in the town).

Caianiello et al. 8 and Scarpetta and Simoncelli 14 showed how the Singer
law can be derived by applying the refinement invariance principle. This analy­
sis is based on the assumption (experimentally derived by analyzing the data of
an Italian region) that the average number of "local units" of services and
the average number of workers are proportional to the number of inhabitants.

www.manaraa.com

10 Chapter 1

Therefore, their product ("which gives us the value of the town") is propor­
tional to the square of the average population (Vh = k(Ch)2).

The comparison (introducing n = 12 levels of towns) with the real distribu­
tion of the population has been shown to be true for several developed coun­
tries. Even in this case the deviations can be easily interpreted politically (e.g.,
France, where centralism is evidenced by the absence of level n - 1 and a
smaller value for cn - 2). In general, the paradigm does not hold for developing
countries, and in this case the deviations can be justified. 14

1.3.2.3. Natural Languages

A third aspect of human societies, in which the larger the group the more
complex it becomes, is communication among members. Much research has
been done on the hierarchical organization of natural languages. Scarpetta and
Simoncelli l4 showed how natural languages belong to the family of HMSs.
The hierarchy was classified as letters, syllables, words, predicates, clauses,
sentences, paragraphs. Some difficulties arise in defining the values associated
with each level. One suggestion is that a coarse assignment can be based on
the average number of letters p required to make up the element of each level.
On a first training set consisting of newspaper articles, they discovered that a
fair agreement between data and the theory of HMSs is obtained with
Vh = (p2)h, where p2 acts as the module of the HMS. 14, 15 This assumption has
been shown to hold even outside the training set.

In fact, the kind of hierarchy introduced by natural languages has a quite
different nature from the one belonging to monetary systems and the distribu­
tion of settlements: the elements of a level recursively constitute the compo­
nents of each successive level. Beckerl5 called the first a horizontal hierarchy.
and the other case, in which level components are disjointed, has been called
vertical hierarchy. We generally consider this last category.

1.4. HIERARCHICAL ARCHITECTURES FOR PARALLEL
PROCESSING MACHINES

Beckerl5 asks whether the structures that have been selected in the course
of evolution, because of their efficiency, are of any value for parallel computer
architectures. It has been pointed out that one of the structures can be found in
several diverse systems: the modular hierarchy. In fact, the hierarchical levels
supply efficiency in large systems, and modularity allows us to handle values
which range by orders of magnitude with a restrained number of levels.

www.manaraa.com

Hierarchical Architectures 11

Two types of hierarchy can be considered: vertical (one over groups) and
horizontal (grouping of groups). Solutions belonging to each of these families
have been proposed and, in many cases, applied to computer vision. Hierarchi­
cal topologies are discussed in depth in Chapter 3; stars (Section 3.4.2), trees
(Sections 3.5.1-3.5.3), and pyramids (Section 3.5.4) are examples of the first
type of hierarchy, and snowflakes (Section 3.4.1) and hypemets (Section 3.5.5)
are examples of the second.

In the first case several modules have been used; generally, the most popu­
lar cases are the bin and quad trees (pyramids) in which nkink+ 1 is equal to 2
and 4 respectively. Obviously, the corresponding modules are 4 and 16. As a
consequence, the higher the level the more powerful the processing element
has to be in terms of CPU capability, local memory, etc. (The quantitative ratio
between adjacent levels must be 4 and 16). As we will see, the different levels
in the hierarchy correspond to different levels of abstraction on data, different
computational paradigms (from numeric to symbolic processing), and different
flexibility and concurrence capabilities. This trend is quite evident in all the
hierarchical systems described in Chapter 8. In other cases technological con­
straints, fault tolerance limits (against processing element specialization), and
complexity in handling and balancing heterogeneous components partially hide
the HMS structure.

In horizontal hierarchies vM elements of one level form one element of
the successive level, and in a self-similar way vM groups of this level form
one of the next, recursively. By construction all the elements are equal. This
results in a general hierarchy which does not follow the HMS paradigm. This
approach, as we will see, has been followed for coarse-grained systems and is
effective for high-level computations. It not a suitable approach for very large
systems of simple elements which cannot be loaded with interlevel activities.

REFERENCES

C HeWitt and H Lieberman, DeSign Issues m parallel architectures for artilicial mtelligence,
MIT A I Memo No 750, pp 1-14 (1983)

2 L J Siegel, H J Siegel, and P H Swam, Parallel a1gonthm performance measures, m
Multicomputers and Image Processmg (L Uhr, ed), pp 241-252, Academic Press, New
York (1982)

3 V Canton! and S LevIaldl, Matchmg the task to a computer architecture, Comput VIsIOn,
GraphiCS Image Process 22, 301-309 (1983)

4 M D Kelly, Edge detectIOn m pictures by computers usmg plannmg, m Machme Intelligence,
Vol 6, pp 397-409, Edmburgh Umverslty Press (1971)

5 S L Tanimoto and A Klinger, Structured Computer VISIOn Machme PerceptIOn through
Hierarchical ComputatIOn Structures, AcademiC Press, New York (1980)

www.manaraa.com

12 Chapter 1

6. E. R. Caianiello, Some remarks on organization and structures, Bioi. Cybernet. 26, 151-168
(1977).

7. E. R. Caianiello, G. Scarpetta, and G. Simoncelli, A systematic study of monetary systems,
Int. J. Gen. Syst. 8, 81-92 (1982).

8. E. R. Caianiello, M. Marinaro, G. Scarpetta, and G. Simoncelli, Structure and modularity in
self-organizing complex systems, in Topics in the General theory of Structures (E. R. Caia­
niello and M. A. Aizerman, eds.), pp. 5-57, D. Reidel, Dordrecht (1987).

9. E. R. Caianiello, A thermodynamical approach to hierarchical self-organizing systems, private
communication, seminar delivered at IIASA (1979).

10. J. D. Becker, Structure, justice, and efficiency, Proc. Workshop on Modelling Processing of
Structural Change in Social Systems, Beitriige zur Sicherheitspolitik Nr. 3. Max-Planck-Ges.,
Max-Planck-Institut (1988).

11. J. C. Hentsch, La circulation des coupures qui constituent une monnaie, J. Soc. Statist. Paris
4, 279-286 (1973).

12. H. W. Singer, The "courbe des populations". A parallel to Pareto's law, £Con. 1. 46, 254
(1936).

13. G. R. Allen, The "courbe des populations". A further analysis, Bull. Oxford Inst. Statist. 16,
179 (1954).

14. G. Scarpetta and G. Simoncelli, Self-organizing hierarchical modular systems, in WOPPLOT
86--Parallel Processing: Logic, Organization and Technology (J. Becker and I. Eisele eds.),
pp. 87-119, Springer-Verlag, Berlin (1987).

15. J. Becker, Structural aspects of organizing parallel processing machines, K. Ecker (Hrsg.),
Berichte des Instituts fiir Informatik der Universitiit Clasthal (1988).

www.manaraa.com

Chapter 2

Hierarchical Strategies in Computer
Vision Systems

In order to achieve the high performance that real applications require, correct
computation on the relevant image data at the right time is essential. Following
the studies on vision and perception in humans, two phases can be distin­
guished: (1) a preattentive phase, in which the visual system is only dedicated
to the detection of events and regions of interest within its wide field of view,
and (2) an attentive phase, in which an extensive analysis of a restricted amount
of data is performed. Correspondingly, an equivalent computational paradigm
will be introduced in order to reduce the huge amount of raw data transduced
by a standard artificial vision sensor. Such a paradigm provides for the use of
variable-resolution grids, according to the image detail required for the task,
thus obtaining multiresolution systems with different-sized layers.

2.1. INTRODUCTION

It has been explicitly stated by many authors l- 3 that vision in humans, and
even in higher animals, is not a pure mechanical act but a creative one. The
discovery of what is present in the scene, and where it is, is usually achieved
by means of a "smart" selection of data located almost anywhere in the wide
field of view, even at an early stage of analysis. Human vision has a sophisti­
cated control mechanism that can move and "focus the camera eye in these
regions. "

13

www.manaraa.com

14 Chapter 2

A practical example of the effectiveness of this process is object inspection
during manufacturing. In this case the object may be large and intricate, but a
human inspector quickly locates just those points that need close examination.
When automated, visual inspection involves two distinct and sequential tasks
as well:4 (i) locating the object to be inspected; (ii) the detailed inspection of
the component to check its compliance to specifications. Freeman4 clearly de­
scribes this process: "When carried out by a human inspector, the first of these
(steps) is usually done subconsciously; in a machine vision system it must be
addressed as an explicit task that is often the most difficult part of inspection. "

In order to achieve performance comparable to that of a human inspector,
automatic systems must be able to implement some kind of coarse-to-fine hom­
ing procedures and closely examine only a restricted subset of the input data.
This is the only way to reduce the overall computational cost by any order
of magnitude.

The basic elements needed to implement this process are discussed in this
chapter. The selection in space and time of events and of regions of interest
means (i) the adoption of a hierarchical data structure and the exploitation of
interscale properties; (ii) the definition of common representations of local and
global image features and of fine-to-coarse algorithms to allow their quick gen­
eration; (iii) a computational platform with coarse-to-fine strategies to locate
and redirect attention in space (focusing) and in time (tracking); (iv) the defini­
tion of fast high-level mechanisms to implement hypothesis-test cycles.

The special-purpose systems used for the effective implementation of all
these processes are the arguments of this book.

2.1.1. Recognition Cones

One of the most impressive human capacities is the great speed of visual
perception despite the very slow and simple basic processor, the neurone. In
fact, primates perceive complex patterns like faces in 70-200 msec, and this is
likely5 to involve 10-102 serial processing steps (each neurone requires at least
1-2 msec to fire and to distribute its single datum to the interconnected ones).
The hardware of the human brain consists of 1010_1012 neurones, a great por­
tion of which is involved in vision, each one communicating by means of
102_103 connections.

The human camera eyes are composed of approximatively 250 million
receptor cells each sensible to a portion of the electromagnetic spectrum be­
tween 0.4 and 0.7 /Lm. Each retina contains 6-10 million cones and about 120
million rods with a nonuniform distribution as will be described in Section
2.1.2.1. The rod cells are approximatively 500 times more sensitive to light

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems

• COnes

I Rods

Receptors

Horizontal cells

Bipolar Cells

Amacrine Cells

Gangllon Cells

Optic Nerve

o Inter layer Cells {) 0 Antagonistic Center-5wround Cells

LIght

15

Figure 2.1. Schematic diagram of the retina layers outside the fovea and their interconnection.
The two different receptor nuclei are connected to a horizontal layer and to the bipolar, "vertical,"
one. A new interlevel layer is composed of amacrine cells between the bipolar and ganglion cell
layers.

intensity than cone cells, which in tum are differentially sensitive to red, green,
and blue components. Indeed a 10.14 portion of the light produced by a single
candle is sufficient to stimulate the rods. 1

The retinal pathways between the receptors and the optic nerve follow the
sequence of connections illustrated schematically in Figure 2.1. The "verti­
cal,,6 pathway made by the receptor-bipolar-ganglion cells is integrated with
a two-level "horizontal" organization consisting respectively of the horizontal
and amacrine cells. The first level, which corresponds to the receptor and bipo­
lar cells, contains the horizontal cells. The second level is composed of the
amacrine cells and creates a similar horizontal interconnection at the bipo­
lar-ganglion cell layers. These horizontal levels allow the implementation of
local and regional manipulations. The retinal ganglion cells communicate
through the optic nerve with the inner brain neurones.

www.manaraa.com

16 Chapter 2

The final receptive field of a ganglion cell (area at the retina which influ­
ences the behavior of the cell) varies a great deal with respect to the corres­
ponding position in the retina. In particular, the farther they are from the fovea
(the area of the retina having the highest concentration of cones), the larger the
receptive field of these cells usually is. In the fovea, where the connections
between receptor and bipolar cells, and between bipolar and ganglion cells have
very few or no lateral interactions, the cone diameter (and consequently the
distance) is approximatively 2.5 /-Lm and gives our minimum visual angle at
which two points can be resolved: 0.5 min of arc. 7 Instead, on the edge of the
retina the receptive field includes thousands of rods, to which corresponds an
acuity of more than 10. Obviously, for the same reason the sensitivity to light
is in the reverse order: the integration of several rods produces the extremely
high light sensitivity outside the fovea.

The ratio between the number of receptor, bipolar, and ganglion cells in
the fovea is close to I: 1: 1, whereas in the periphery it is of hierarchical nature
(see Chapter 1). The ratio reported by Geldard8 in this area between rods,
bipolar cells, and ganglion cells is 100: 17: 1. All the quoted authors point out
two vertical layers downstream and the concentration of data with a 100:150
ratio between the receptors and the fibers of the optical nerve (ganglion cells).
Both bipolar and ganglion cells show excitatory and inhibitory synapses, and
they are customarily viewed as contrast detectors. Moreover, half of the gan­
glion cells are center-surround antagonistic and can be broadly classified as
sensitive to "on-center-off-surround" or "off-center-on-surround" spots. 7

Uhr, in 1972, introduced the term "recognition cones,,2 on the basis of
this structure of the peripheral human vision system that executes a "shallow
hierarchy of massively parallel . . . micromodular processes to examine suc­
cessively more global aspects of the scene, extracting, abstracting and combin­
ing information as needed.' '5

From the eyes, through the optic nerves (each composed of approxima­
tively one million axons of the retinal ganglion cells), via one layer of synapses
in the lateral geniculate bodies, the visual information arrives at the pri­
mary visual cortex. The role of the lateral geniculate body does not seem to be
that of a simple relay station. In fact, even if the number of fibers leaving
this structure is approximatively equal to the number coming in, the band­
width is about half; this suggests that a spatial and temporal integration is
accomplished.9

The primary visual cortex is usually called the striate cortex because of its
layered structure. It is located in the occipital lobes. In the 2-mm cortex depth
six uniform layers of densely linked neurones have so far been identified. Dif­
ferent layers are communicating with other parts of the cortex, with the lateral

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 17

geniculate body, and with the superior colliculus (see Section 2.1.2.1). The
activity of most of the cells involves several layers. This indicates, besides
layered organization, a columnar one as well, which Hubel and Wiesel have
shown to be functionally specialized. In fact, the striate cortex is subdivided
into elementary functional units (called hypercolumns) with the axis approxima­
tively perpendicular to the surface of the cortex and a section of approximately
1 mm2.

Each unit is subdivided into two halves, with the dominance respectively
from the left eye and the right eye. Each hypercolumn performs the analysis of
a precise section of the retinal image (which is called the hyperfield). In fact,
although strongly distorted, the components of a scene can be topographical
localized in the striate cortex (some details on this will be given later). Broadly
speaking, the hypercolumns make up a set of coprocessors which perform local
feature detection, such as detecting the orientation and motion of simple pat­
terns, and estimating punctual depth.

Obviously, the primary visual area is not the only one involved in vision.
It seems to be just a set of local coprocessors which exchange information
with at least 20 other secondary visual areas in the cortex. Each of these areas
communicates with some of the others through bidirectional pathways. The
overall architecture is unknown, but it has been found that each area is linked
at most to eight others, and on average to two or three (this conclusion
is reported by Vhr 5 on the basis of the physiological and anatomical stud­
ies of Van Essen.)l0 Obviously, some of these areas are also involved in non­
visual tasks and may participate in sensory data integration and sensory motor
coordination.

Many authors have pointed out that the time required for object recogni­
tion depends on object complexity: starting from a few tens of milliseconds for
simple stimuli, like bars, and reaching several hundred milliseconds for very
complex objects. The "serial depth of processing" described by Vhr 5 on the
basis of the physiological and anatomical studies by Mishkin et aI., II includes
the sequence of manipulations in the retina, the lateral geniculate body, the
primary cortex, and, from here onward, through the two main parallel path­
ways located respectively in the temporal and frontal lobes. The former path is
concerned with the analysis of shape and color, whereas the latter analyzes
motion and spatial relationships. These analyses are of course integrated with
each other and with the nonvisual perception clues: among the areas involved
there may be cycles and feedback loops.

While flowing through the human visual system, scene information, origi­
nally coded by scene points in the retina and represented by simple pattern
primitives in the striate cortex output, gathers into more and more complex

www.manaraa.com

18 Chapter 2

structures. As this information is processed from peripheral neurones to inner
cortical areas, the level of data abstraction gets higher and higher and precision
in pattern location becomes smaller and smaller. In other words there is a se­
mantic evolution from "where" toward "what" in the scene. 12

High-level neurones fire when the stimulus in the scene is a specific one;
it seems that there are specializations in "a complex network of information­
transform neurones, probably part of a larger structure that fires at that ob­
ject.,,5 However, it is worth noting that there is no single "grandmother cell"
specialized for any complex object, and that the computational structure, not
being committed to the hardware structure, is flexible.

Following the above considerations, it is possible to broadly quantify the
timing of the successive phases in a recognition task. The peripheral processes
are clearly massively parallel right from the retina manipulations until they
reach the local operations in the striate cortex. According to Uhr5 they include
two to three transformations at the retina level, one in the lateral geniculate
body, and from three to six in the primary visual cortex. The total number in
the preliminary parallel phase is 6-10 operations. The double parallel path
which follows in the secondary visual area consists of a serial sequence that
has been estimated as four to six transformations inside each area. The integra­
tion and convergence require a sequence of three to six exchanges between the
areas, giving a total of 18-46 transformations. If possible loops in the cortical
area are included, this total gives rise to the 70-200 msec recognition time.

Concluding this description of human visual hardware, let us point out
once more the massive and hierarchical parallelism of the peripheral phase and
of the specialized feature detectors (striate cortex) and the mainly sequential
processing with exchanges between the different areas inside the cortex (in
which a hierarchy can be recognized only for data abstraction). A second gen­
eral comment refers to the extreme flexibility of the system, not only in select­
ing paths, loops, and exchanges for the management of cortical information,
but even in the capacity for hardware and behavioral adjustments on a training
basis (neural plasticity).

2.1.2. Alerting Mechanisms and Peripheral Guidance

According to Marr,13 vision can be defined as "the process of discovering
from images what is present in the world and where it is." The sensing re­
sources of the human eyes are densely concentrated in the fovea, where infor­
mation gathering is an active, dynamic process. As mentioned, the fovea occu­
pies only a small portion of the field of view of the human eye l : the foveal

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 19

region with uniform cone distribution at the maximum density is only ± 20
min of arc around the visual axis; the rod-free foveal region is ± 1°-2°; the
angle at which the rod density is at maximum is ± 15°-20°; finally, the sensing
field is extended broadly over ± 80 ° (see Figure 2.2).

The efficient exploitation of the rich sensing resources of the fovea on
such a wide field of view is obtained by sophisticated "alerting mechanisms,"
which allow us to employ the fovea just in selected areas of the scene and to
rapidly guide the focused area through the scene or/and through the images as
the task at hand evolves. The areas of inspection of the scene are selected by
scanning and analyzing the world around us by eye vergence and head and eye
movements. The current eye image is then analyzed by serial shift of "focal
attention," which can take place rapidly even without eye movements. Julesz14

showed how "focal attention shifts" are about five times faster than eye move­
ments: attention allocation is driven by eye movements to some "gross center
of gravity"; then a detailed scrutiny is performed sequentially on an element­
by-element basis by "a fast-moving aperture of the searchlight of attention."

The astonishing performance in object recognition, using such limited re­
sources, is achieved because of the capability to achieve a smart selection of
the regions of scrutiny in space, resolution, depth, and time. This strategy will
be investigated in some detail in the following three subsections, which cover
different aspects: the foveation process toward the area of scrutiny of an image;
the tracking mechanism that permits us to follow a target in image sequences;
the general framework of control which is necessary to implement these ap­
proaches and to establish the sequence of the activities.

2.1.2.1. Foveal Vision

The basic functions of the oculomotor system are (i) to control vision in
such a way that the target (scrutiny area) drops into the fovea and (ii) to keep
the target into the fovea even if the target or the observer are moving. In 1903,
Dodge lS subdivided the eye movements into two categories: smooth pursuit
movements and saccadic movements. In 1961, Rashbass 16 showed that there
are two different control systems for these two conjugate movements (some
comments on the movements of the eyes in opposite directions, as required for
example for eye vergence, will be given later). The former is responsible for
slow movements, and its primary function is to move the eyes in a synchronous
manner along with the target so that its projection remains stationary on the
retina. The latter, instead, is involved in high-speed target movements and in
changing the fixation points.

www.manaraa.com

20 Chapter 2

The simplest way to cause a saccadic movement is to suddenly present a
new target on the periphery of the field of view. To produce a saccade a devia­
tion of 0.3° from the fovea is sufficient P The speed of eye rotation increases
with the amplitude of the eye movement and can reach a maximum of about
6OO0 /sec,17 in man, for rotations of 30°-40°. Finally, if the required deviation
is greater than 15°, the target is often reached by a sequence of a few, usually
two, discrete steps (saccades).

There is evidence6• 9 that the function of guiding the alerting mechanisms
and of coordinating the oculomotor activity is done in the subcortical area
called midbrain: precisely in the superior colliculus (the two superior colliculi,
one for each hemisphere, are connected with the retinas and with the striate
cortex). In this center, new presences in the scene are detected and located.
Then, on the basis of their eccentricity with respect to the fovea, the saccadic
movements, which allow us to foveate and examine the new presences at the
cortex's full capacity of analysis, are produced. With these duties, it is easy to
understand why the superior colliculus is the most important visual center in
the lower animals of the evolutionary scale, such as fishes and amphibians.

As mentioned in the previous section, the alerting analysis is accomplished
in parallel over all the field of view; obviously, it is followed by a sequential
analysis of the detected scrutiny areas, realized by means of ocular movements.
The first phase is often called the preattentive phase or early vision phase. The
second, detailed analysis of the focused areas is called the attentive phase.

Evidence that discrimination of the areas of scrutiny is done in parallel,
whereas detection is serial, has been provided by Sagi and lulesz. 18 In different
experiments, they showed that the processing time is almost independent of the
number of targets (here, object models) to be detected, while it depends on the
number of instances present in the visual field to be analyzed. According to
the authors, and to our comments in Section 2.1.1, where is parallel, what
is sequential.

The foveation process has been suggested by many authors as a solution
to attentive object recognition problems. Figure 2.2 gives details on the nonuni­
form distribution of receptors in the retina. As pointed out above, visual acuity
rapidly decreases from the fovea to the retinal periphery 19: the angle which
corresponds to a 50% drop in visual acuity is only ± 5° around the visual axis.
Many authors20• 21 point out that this acuity distribution (often approximated
with the function 110, 0 being the angle with reference to the visual axis) sup­
ports a scale-invariant sensing that can be exploited for object recognition pur­
poses.

A movement in depth relative to the observer makes the retinal image of
the target change its size. The monotonic distribution of retinal acuity balances

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems

Visual Axis

Temporal Retina

90

-90

Nasal Retina

21

Nerve

Figure 2.2. Distribution of the receptors in the human retina. Diamonds (.) represent rods,
squares (0) represent cones. The height of the curves along the normal to the circle represents the
density of receptors in millions/mm2. In the nasal area at the exit of the optic nerve the absence of
receptors produces a "blind spot."

this effect with an opposite variation in acuity. In this way I by means of appro­
priate eye movement, details can be made invariant with respect to the viewing
distance. Consequently, visual hardware can support scale-invariant object rec­
ognition strategies.

In conclusion, the nonuniform distribution of the acuity, combined with
dynamic control of eye movements, provides a very effective mechanism which
supports event selection and perceives invariant primitives for recognition pur­
poses.

2.1.2.2. Locking into the Target

The main objective of the second conjugate oculomotor system, the
"smooth pursuit," is to stabilize the target image on the retina. In order to
achieve this, the eyes must be moved with a speed correlated with the target
speed. Saccadic movements mainly depend on target eccentricity with respect
to the fovea. Instead, smooth pursuit movements mainly depend on target ve­
locity, and their control system can be considered basically as a velocity servo.
Due to static and dynamic limitations, tracking of fast targets may require con-

www.manaraa.com

22 Chapter 2

tributions from saccadic and smooth pursuit systems. In appropriate conditions,
smooth pursuit velocity can reach about lOOo/sec. 22

In fact, target tracking requires another control system for vergence, which
allows us to follow the target movements in depth with respect to the observer.
In this case, eye movements are the opposite. More precisely they must con­
verge if the target is coming closer to the observer, and diverge in the opposite
case. There are three other eye movement control systems, the vestibulo-ocular
reflex (VOR), the optokinetic reflex (OKR), and a reflex originating from the
neck: proprioception. They compensate retinal image movements due to ob­
server's movements in a stable visual environment and are briefly described
here.

The role of foveation in space is accomplished by tracking in time. In
fact, tracking allows a selective analysis by isolating regions in successive time
(frame in computer vision), thus simplifying target motion analysis in a dual
way with respect to the selection in space of the regions for the detailed
analysis.

Human tracking is simplified by the VOR and the OKR. They are tightly
coupled in one functional unit which philogenetically represents the oldest ocu­
lomotor control system. Its role is to suppress the scene motion components
due to head movements in space. The reflex originating from neck propriocep­
tion (cervico-ocular reflex, COR) is less well known. It is assumed that its role
is to compensate scene motion due to head rotation with respect to the body.

VOR and COR exploit neural signals coming from receptors of the vestib­
ular system of the inner ear and from the proprioceptors, respectively, as input
signals for compensation. They basically work in an open loop. The loop is
closed by OKR, which is stimulated by the residual image slip on the retina
(retina slip) and acts to suppress it.

The three reflexes converge and interact at the level of the vestibular nu­
clei of the brainstem. Coordination is obtained thanks to the complementary
performance of each reflex and, in particular, to the negative-feedback, closed­
loop structure of OKR. 23,24 This process is supervised by the cerebellum. 25 The
vestibular nuclei receive head motion information of vestibular (i.e., inertial),
proprioceptive (i.e., mechanical), and optokinetic (i.e., visual) origin and can
then reconstruct the absolute head movement. This is used for ego-motion and
object-motion sensations. 23, 24, 26

The human tracking system is so effective that even small objects slowly
moving relative to the tracked and stabilized background stand out: the mini­
mum speed to detect a target in the fovea is 1-2 min arc/sec, and progressively
increases going toward the periphery of the retina. 9

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 23

2.1.2.3. Where to Look Next

The only way to effectively implement analysis of the current scene is to
be able to predict, or at least to easily detect, where the salient information to
accomplish the visual task at hand is likely to occur. This can be achieved in
two ways: the first is by having at least a partial understanding of the content of
the scene; the second is to be able to rapidly locate the key items for analysis.

The analysis of the order of eye fixation points, or scan path following
some authors, has been deeply investigated, starting from the well-known ex­
periments by Yarbus27 (see Figure 2.3). As can be easily derived from inspec­
tion of the bust of the Egyptian queen Nefertiti, the scan path is by no means
random, but the "salient" features of the scene (mouth, nose, eyes, ear) are
inspected following a dense and "uniform" pathway. This regular sequence of
the salient features has been called feature ring. 28 Noton and Stark suggested,
in the paper quoted, that the feature ring is used for remembering and recogniz-

Figure 2.3. Eye fixation pathway generated when looking at the Egyptian queen Nefertiti. Note
the regular sequence of "critical" points, each one representing significant features for image
evaluation. (Courtesy of A. L. Yarbus, Eyes Movements and Vision, New York, Plenum Press,
1967.)

www.manaraa.com

24 Chapter 2

ing objects. In particular, the feature ring could be used as a test verification
strategy defined a priori. Each object can be represented in memory by the
feature ring, which becomes the model, and the sequence of eye movements
for recognition. This hypothesis is controversial; however, like many other con­
jectures concerning human object recognition strategy, it is based on the as­
sumption that recognition implies an active comparison between the salient fea­
tures of the object detected and those of the object models stored in the brain
as a result of previous experience.

The cited experiment, even if it does not prove (and probably this is not
the case) that the human-eye scan path is always the same for a given object,
shows that the scanning sequence takes care of a few important features. lulesz
claims that scan path is one of the most misused words by vision scientists. 14

Certainly, the features usually considered in feature rings correspond to the
contour critical points described by Freeman29: the points with highest curva­
ture and the angles. These are commonly used for recognition purposes and are
also considered for object synthesis to allow shape recognition with a compact
description.

On these points, the scrutiny of the unknown object can be based. Starting
from the most peculiar ones, recursively, as new information is gathered, new
hypotheses are formulated, the system directs eyes toward the missing details
in order to confirm or reject the hypotheses until there is sufficient evidence for
recognition. During these phases of hypothesis and testing, complete integra­
tion of cortical and peripheral visual analysis occurs.

According to Burt,21 this recursive interplay between peripheral sensing
and interpretation is the key difference between traditional image processing
systems and the human vision system. To implement this approach in computer
vision systems, it is ncecessary to speed up the high~level reasoning capability
in order to generate the strategy and the control for the selection of the areas
of interest (where to look next) in real time. Because of the enormous amount
of data generated with standard visual sensors, this cannot be achieved by
working directly with the data generated uniformly at high resolution.

2.2 ALLOCATION OF ATTENTION IN COMPUTER
VISION SYSTEMS

Traditional image processing systems are characterized by the implementa­
tion of a fixed cascade of steps: the image is collected, preprocessed, seg­
mented, analyzed, and interpreted or classified. This static computational para-

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 2S

digm mismatches the strict interaction needed to execute in real time even the
simplest task that human beings normally execute without apparent effort.

Raw visual data emerge from the standard transducing sensors at the rate
of 106_107 pixels per second, which are uniformly distributed on the camera
field of view. Most of the information collected is unproductive, and useful
data have to be extracted from this huge amount of ineffective data. Conven­
tional computers are unable to deal with this selection problem. It is necessary
to specialize the computer vision systems to identify the regions and the events
of interest in a manner equivalent to that of the higher-order animal vision
systems.

The human attention mechanism operates on the same huge amount of
data by redirecting its sensing resources to just the data necessary to accomplish
the tasks needed, switching in a predefined, shortly determined sequence be­
tween the salient areas to allow scrutiny. Analogously, a computer vision sys­
tem must be capable of (i) rapidly selecting the regions of interest in space and
time; (ii) reallocating computer resources, maintaining efficiency even if the
data load changes considerably; (iii) changing, as required, the data resolution,
in order to operate with local and global (or regional) features; (iv) rapidly
updating the strategies on the basis of the partial results achieved step by step.

The most promising proposals that directly address the cited requirements
are based on multiresolution processing. 30-32 This approach consists of analyz­
ing the images through a pyramidal data structure. This data structure supplies
the same image at different resolution levels (see Figure 2.4), thus ensuring the
use of the most appropriate resolution for the operation, task, and image at
hand. As a general strategy, large components can be analyzed at low resolu­
tion, while small components are handled at the highly detailed levels. Never­
theless, independently of the target size, a considerable reduction in the amount
of data to work with is gained every time the property involved is scale inde­
pendent. Furthermore, pyramid data structures allow (i) easy detection of local
and regional features by selecting the appropriate scale; (ii) coarse-to-fine de­
tection and analysis strategies; (iii) detection of interscale properties.

In the literature it is possible to find other data representation approaches
that have a hierarchical structure ,33. 34 among which are the quad-tree data
structure, which is based on the description of a single-scale image by a vari­
able-resolution hierarchical structure,35 and other representations adopting a hi­
erarchical recursive grouping of features based on a single-scale resolution
image. 36. 37

www.manaraa.com

26

/ /~3 (apex)

Chapter 2

Figure 2.4. The multi grid data structure resulting
in a quad-pyramid representation. The size of the tes­
sellation varies with power of 2 steps in the linear
image dimension.

2.2.1. Multiresolution Model Representations

In the last decade three different multiresolution model representations
were introduced which allow us to integrate the hypothesis-test paradigm for
the recognition process. Moreover, such representations may be considered as
guidelines for emulating the focus of attention typical of biological systems.

The first two multiresolution models were similar. One is called a pattern
tree,21 in which subpatterns (having significant relevance for the overall recog­
nition process) are represented as nodes of a tree (see Sections 3.5.1 to 3.5.3),
each descendent node containing a fraction (at a higher resolution level) of the
subpattern present in its parent node. Instead, the second model, called model
feature graph,32 is an acyclic graph where nodes, corresponding to subpatterns
or features, are organized into levels. General nodes at a given level may be
reached via different paths from the previous levels.

A third general method for 2-D object description is based on a linguistic
approach,38 where the object is described on each level by means of a context­
sensitive grammar: in practice the image variations from a coarse to a finer
level are coded by production rules.

In the following these three proposals will be discussed in some detail.

2.2.1.1. Graph-Based Object Representations

In this section we review two frameworks for representing pattern infor­
mation over a wide variety of scales: the pattern tree and the model feature

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 27

graph. These representations support fast coarse-to-fine search procedures for
dynamic vision analysis and object recognition.

In a pattern tree, subpatterns (having significant relevance for the overall
recognition process) are organized along nodes of the tree, with each descend­
ent node containing a fraction (at a higher resolution level) of the subpattern
present in its parent node. A full pyramid of images, taken at various levels of
resolution, is first constructed (for instance, a Gaussian pyramid,39 see Section
2.4.2) and then subarrays are selected in each image representing object subpat­
terns. The size of the subarrays is roughly constant throughout the pyramid so
that progressively smaller subpatterns are represented as moving away from the
root node. Subarrays considered at a given level of the pyramid are not neces­
sarily disjoint since distinctive subpatterns may overlap.

The search for a given object is performed through a sequence of simple
matching steps; the results of each step guide the search at the next step. The
links in the tree help to locate the subpatterns wanted.

If an object is partially occluded, it is still possible to identify it provided
that a distinctive subpattern, represented by a node in the tree, is visible. Nev­
ertheless, for an unambiguous representation of occluded or noisy objects, the
next data structure is more adequate.

The second data structure, the model feature graph (MFG), is a directed
acyclic graph where nodes representing local features or subpatterns are orga­
nized into levels corresponding to different resolutions, and nodes at a given
level may be reached via different paths from the previous level. This is partic­
ularly useful in cases of occlusion: if a feature represented by a parent node is
occluded but there are other parent nodes, there still remains a possible path
that allows us to exploit the feature of the current node.

An interesting aspect of this representation is the specification of the match
set,40 that is, a subset of nodes of the graph belonging to a connected path that
allows us to discriminate between the given object and all other possible ob­
jects. To this end, each node is associated with a weight (smaller than 1) speci­
fying the significance of the feature allocated to that node. The weights are
selected in such a way that any connected path with a total weight equal or
greater than 1, unambiguously identifies the object. A match set strongly re­
duces the search time, since it by itself provides evidence of the presence of
the object in the observed image.

In the model feature graph presented in the cited paper, the features repre­
sented in the graph nodes are sets of unconnected edge points stored in a gener­
alized Hough transform R-table. 41 The matching processes performed at each
level of the search are based on the voting results of the generalized Hough
transform.

www.manaraa.com

28 Chapter 2

2.2.1.2. The Syntactic Description

The well-known structural approach to pattern recognition42, 43 represents
patterns as strings where the patterns are considered at a single resolution level
and the decision-making process for recognition is based on a parsing proce­
dure of the string obtained at the first stage of the analysis. Each object class
is represented by a formal grammar which accepts the string representing the
object to be recognized. The unknown pattern is coded in a sentence which
will be parsed, providing a yes/no answer according to whether the object be­
longs to that class or not. Each grammar may be defined as a quadruple
G = (Vn' VI'P,S) , where Vn (VI) is the symbol vocabulary for nonterminal (termi­
nal) symbols, P represents the production rules, and S is the starting symbol.

The general approach, based on a single-level representation of the object,
implies that the Vn symbols do not always have a direct physical counterpart.
Instead, in the multiresolution method,38 based on patterns at different resolu­
tion levels, there is no difference between terminal and non-terminal symbols:
they all correspond to some specified topological properties of a boundary seg­
ment. Patterns are described at each resolution by means of the same set of
terminal symbols.

Production rules formalize the process through which detail is augmented
as the resolution is increased: each single production rule refers to the same
subpattern at the two consecutive levels between which salient feature(s)
emerge. More specifically, the production rule describes the subpattem evolu­
tion between the low- and high-level resolutions. In this multiresolution gram­
mar the start symbol S corresponds to the first coarse representation of the
object, which can be seen as a blob.

2.2.1.3. An Example

Figure 2.5a illustrates the silhouette of a fish represented at six different
resolution levels by the so-called Gaussian pyramid. Each level is binarized, as
can be seen in Figure 2.5b, to be later labeled in terms of the topological
properties of the contour. In this example, five different classes of "curvature"
have been defined, thus obtaining the corresponding Figure 2.5c.

For each different resolution level, a string may be constructed after asso­
ciating each topological property with a symbol as shown in Table 2.1. By
comparing the generated strings at the different consecutive levels, production
rules describing contour evolution may be extracted. Table 2.2 reports, for
each resolution level, both the contour descriptive string and the corresponding
production rules used.

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems

Table 2.1. The set of tenninal (and
nontenninal) symbols adopted in the
grammar of Table 2.2 to describe the
multiresolulion model of the fish m

Figure 2.4.

Tenninal symbols V, Labels

Very concave W
Concave C
Straight S
Convex X

Very convex Y

29

An overview of the labeling process can be seen on the graph in Figure
2.6 which corresponds to the model feature graph (and to a possible pattern
tree). In fact, the linguistic and the acyclic graph representations are isomorphic
and differ only in the way they code and handle the pattern information: for a
different ordering of the rules a corresponding MFG exists. For the example in
Figure 2.6 representing the rules of Table 2.2, top to bottom and left to right
precedences were chosen.

Table 2.2. The first colunm mdicates the resolution levels, the second the
strings describing (following Table 2.1) the silhouette of the object, and the

third shows the production rules when a new detail appears

L Startmg stnng

5

4 Xl, sl, c l, x2 , c2 , x3, S2

3 Xl, Sl, X2, S2, X3, Cl, X4, S3, xs. C2,

X 6 , C3 , s4

2 Xl, Sl, Cl, X2, C2, X3, C3, X4 , S2, X5 ,

o

c4, X 6, C5, S3

Xl, Sl, Cl, X2 , C2 , X3 , C3 , X4 , c4, X5 ,

C5, X6 , ~,S2

yl, Sl, C l , y2, C2, y3, C3, y4, c4,
y5, C5, S2, C6, y6, C7, S3

ProductIOn rules

SI SI, X2, S2, X3,

X2 X4 , S3, X5, S2 C3, s4

SI SI, Cl, S2 C2

Note that each symbol mstance IS labeled accordmg to the order It appears m the stnng, and
the Implicant label refers to the level above, while the Implied label IS the one pertammg to
the current level If a label (new detail) IS ongmated from two adjacent subpattems, It will
appear m both consequent production rules

www.manaraa.com

30 Chapter 2

a

b

Figure 2.S. (a) Six levels of a Gaussian pyramid representing a fish expanded to a standard
common size; (b) thresholded version of (a); (c) labeled silhouette of the content of (b) after
contour segmentation (see Table 4.1 for symbol meanings).

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 31

'>:i
'" u ::
-g
t:

t3
x

iii
x

III N
~
:I
~

~

,.. ".

u
/

www.manaraa.com

32 Chapter 2

---~- x

-0 -0
Levell

Figure 2_6. Model feature graph corresponding to the production rules of Table 2.2. The full
strings can be easily obtained by replicating leaf nodes downward to the bottom.

2.2.1.4. Recognizing Objects

These representations turn out to be an explicit description of the mecha­
nism for directing attention in the object recognition process. In addition to a
description of the object at different resolution levels, these representations sup­
port the cues for the next focus of attention. The global recognition process
may be subdivided in this way by a step by step series of elementary partial
matches in which each match (mismatch) guides the successive step in the
process. This mechanism models the eye movements performed in humans
when observing objects to be recognized, as described in Section 2.1.2.

The basic strategy of this approach is to start from a coarse version of the
object and, gradually, in a guided manner, reach the finer resolution levels
where the significant details may be found. Three important issues must be
considered for a correct implementation of this strategy:

• The coarsest level should be chosen so as to reliably establish the
branch to be expanded from this node downward.

• The finest level should be enough to discriminate the object to be rec­
ognized among all possible objects that may be present in the scene.

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 33

• The possibility of verifying a correct recognition is available on all
levels of the tree: for levels above the basic one by simply going in
coarse-to-fine mode and for the basic level by observing the isolevel
details.

As for all problems where the solution has to be found by navigating
through the hierarchical graph (see, for instance, Ref. 44) backtracking can be
used, besides the depth-first node expansion, as well as width-first and many
other parallel solutions.

In a recognition process under the constraint of a completely known closed
world the optimal strategy is easily obtained on the basis of all the models of
the possible objects of the scene. To this end, the training techniques based on
learning by example (e.g., the ones based on the detection of the minimal
discriminant description and the maximal conjunctive generalization45) may be
used. Furthermore, in order to increase the recognition rate and to enable fea­
tures attribute weighting of the objects to be recognized, a possibility to be
considered is the extension of the production rule method to attributed gram­
mars46 so as to include metrics in the recognition process.

2.3. MUL TIRESOLUTION MATCHING

One of the most challenging aspects of vision is that often processes must
be size independent: ordinary scenes include objects of many sizes, with many­
sized features, at an arbitrary distance from the sensor. Matching processes
under these arbitrary size conditions are very time consuming. In fact, the exe­
cution of the convolutions with kernels of different sizes requires a sequence
of operations of the order of 0(N 2T 2), where as usual N is the linear size of
the image and T is the linear size of the target.

Even if the search for a target which can appear everywhere in the image
can be more effectively performed with different approaches, let us first show
quantitatively the advantages of a direct multiresolution match (similar quanti­
tative analysis can be found in Burt3 and Dyer32). Let us consider the case of
a target that can appear with s different scales, with a ratio M between two
consecutive scales. The number of operations Of in image space of fixed size
with the various target scales will be

(2.1)

In a multiresolution environment (that is, supposing that we have the im­
age at different sizes, with module M: N2; N2M- 2; N2M- 4; ...) the detection

www.manaraa.com

34 Chapter 2

of targets of different sizes can be executed by correlating the various image
scales with a fixed model target. More precisely, the search for the most scaled­
down target is executed on the highest-resolution image. Larger targets are
identified by correlating smaller and smaller images with the same scale-down
instance of the target. Obviously the effect will be the same as correlating the
standard image with enlarged targets. The number Om of operations in multires­
olution image space with the fixed target space will be

(2.2)

The resulting ration R between the two costs of correlation is

(2.3)

Under the assumption that the resolution of three levels for both images
and targets is sufficient to allow identification (e.g., N = 512, 256, 128,
T= 64, 32, 16, and with the usual quad-tree pyramid having M = 2): the
speedup coming out of Eq. (2.3) is 16.

It is well known, that direct correlation is not the general solution for
object recognition by matching. Nevertheless, several more effective solutions
are based on pattern matching by correlation, e.g., a sequence of steps which
include correlation at low resolution and then verification and refinement of the
solutions at the finest levels. The coarse-to-fine analysis limited to the regions
of interest does not change the conclusion of the analysis above (we will see
some details of it in Section 2.6), which shows that the multiresolution ap­
proach permits us to gain at least one order of magnitude in speedup.

Correlation is not the only image processing task that benefits from multi­
resolution; many object properties that are scale independent (e.g., edges,
shapes, and textures) allow us to reach similar performances (see Chapter 10).

2.4. FINE-TO-COARSE FEATURE GENERATION

In a pyramid data structure, images are represented by a sequence of cop­
ies of the original data in which both sample density and resolution are de-

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 3S

creased in regular steps, from the base (containing the original image) toward
the apex. Some irregular solutions are analyzed in Chapter 10. Figure 2.4
shows a uniform square tessellation; this is not the only possible solution, and
a general analysis of the possible tessellation suitable for hierarchical composi­
tion is given by Tanimoto.47 In the following we will consider the square case,
by far the most commonly used, and the second most important hierarchical
solution, hexagonal tesselation. A detailed analysis of this last case can be
found in Burt,48 Ahuja,49 and Hartman and Tanimoto. 5o

The degree of reduction between successive image copies (levels subse­
quently) can vary over a wide range. In a common solution the number of
pixels is halved at each successive level. Some authors51 • 52 in an isotropic
way, but adopting different approaches, use a scaling factor v'2 for each linear
dimension. Others generate the so-called bin pyramid by resampling alterna­
tively in either direction, I x 2 and 2 x I, as described in detail in Sections
3.5.4 and 5.2.4.4. In a quad pyramid the scaling factor is 4 (2 for each linear
dimension). Smaller ratios have been proposed till the limit case considered by
Uhr was reached. 5 Here the convergence is not logarithmic but linear: a con­
stant (e.g., unitary) decrement is applied for each dimension. In the following
parts of this chapter, the structure discussed will be the quad pyramid; but
remember that all results can be easily extended to the other regular cases men­
tioned.

In a pyramid data structure, images are represented in multiresolution and,
going toward the apex, the bandwidth of the various levels decreases. In fact
on the basis of the Nyquist limit, only low-spatial-frequency components can
make up the data in the higher layers of Figure 2.4. In particular, in the quad­
pyramid case, the bandwidth decreases uniformly along levels in one octave,
or power-of-2, steps.

The pyramid construction from the original image can be accomplished in
many ways: the simplest way consists of direct subsampling; each level is ob­
tained by discarding the even rows and columns from the previous level (hard­
ware has been conceived that achieves this result in zero steps just by loading
the image from a camera; see Section 7.2.3.1); other, more sophisticated, solu­
tions are usually pursued in order to preserve or to enhance some image proper­
ties. In what follows we analyzed the formal definition of a few pyramid repre­
sentations.

2.4.1. Wavelet Representation

An analytical foundation of the notion of multiresolution, specifically of
multiresolution signal representation, was introduced by Mallat. 53 It is based

www.manaraa.com

36 Chapter 2

on the wavelet representation: a set of approximations of a signal (image) is
produced at different levels of resolution and is used to build the actual multi­
resolution representation. This consists of a coarse version of the original sig­
nal, plus a set of "detail signals." The detail signals are the differences be­
tween successive reduced resolution approximations.

The wavelet decomposition is complete and not redundant: the original
image can be reconstructed without distortion, and the number of data in this
representation is equal to the number of input samples. These properties are
due to the fact that the wavelet decomposition uses an orthonormal basis.

This decomposition is a multiresolution representation which has the char­
acteristic that the functions of the basis are similar at all resolutions. In fact,
they are generated from a single function by scaling and translation. Moreover,
the discrete approximated versions of the input signals can be computed by
convolution with a quadrature mirror filter and a subsequent decimation in
space (see Sections 2.4.1.3 and 2.4.1.4).

The representation of bidimensional signals (images are the most common
case) can be tuned to be sensitive in any chosen direction. If we consider a
separable basis, the simplest wavelet is the set of the Haar basis functions. The
Haar transform emphasizes image discontinuities in the two main orthogonal
directions (a somewhat detailed analysis of this transform is given in Section
2.4.4). Nonseparable functions can be selected to yield sensitivity in a single
specific direction.

The wavelet representation has both theoretical and practical interests. It
sets a framework for all nonredundant multiresolution image representations
and can therefore be used as a yardstick for other representations. In the follow­
ing sections, we will discuss some alternative image pyramid representations,
e.g., the Gaussian and the Laplacian pyramids. The wavelet decomposition
will be used as a framework for studying their characteristics in the context of
signal theory.

In regard to applications, the wavelet transform is being used especially
in speech analysis, image coding, and progressive image transmission. Some
proposals have been put forward to create new standards for HDTV, based on
such a representation as a replacement for the more common discrete cosine
transform.

In the following, we briefly summarize the definitions of Mallat by analyz­
ing first the monodimensional case and later extending the analysis to the bidi­
mensional one. The section closes with a short review of other orthogonal rep­
resentations that can be considered as closely related to wavelets. 54

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 37

2.4.1.1. Multiresolution Vector Spaces in L 2(R)

Mallat fonnalizes the notion of multiresolution in the context of finite­
energy signals represented as functions in the vector space L 2(R). In an analo­
gous way, the refinements of hierarchical modular systems were introduced in
Chapter 1. The nonnalization is achieved by choosing a set of subspaces Vr ,

each of which allows us to represent any signal at the corresponding resolution
r. According to Mallat, such subspaces are a multiresolution representation of
L 2(R) if the following conditions hold:

• The sequence of resolutions is denoted with the values of r such that
r = 2 i , i €Z; i.e., the original signal is defined at resolution 1, coarser
approximations are defined at resolution l, 1, k, and so on.

• Vr C V2r: each new coarser subspace Vr is already available in the finer
subspace V2r.

• The subspaces are dense in L 2(R).
• Let g(x) be a function in Yr. Then g(2x) is a function in V2r; that is, the

approximating subspaces are made up with functions that are similar at
all resolutions and that can be derived from one another by scaling.

• The self-similarity property holds within each subspace and any func­
tion in the subspace can be defined by a set of r samples per unit
length: g(x)€Vr~g(x-r-lk)€Vr' Vk€Z.

2.4.1.2. The Scaling Function

Given a multiresolution representation Vr of L 2(R), Manat shows that a
single function exists: cp(x)€L 2(R), which acts as a generator for an orthonor­
mal basis for each subspace Yr. By defining CPr(x) as the dilation of cp(x) by r:
cP,(x) = rcp(rx) , the orthononnal basis for Vr is the set {r- 1I2cpr(x-r- 1k),
V kEZ}. cp(x) is the scaling function of the chosen multiresolution representa­
tion of L2 (R).

According to this result, the approximation of any signalf(x) € L2(R) at
a given resolution r, denoted by f,(x) , can be derived in the reduced resolution
subspace Vr as an expansion over the basis CPr(x):

n=OO

(2.4)
n= -00

The coefficients f~ of the expansion are known as the discrete approxima­
tion of the signal f(x) at resolution r. The computation of this discrete approxi-

www.manaraa.com

38 Chapter 2

mation f~ is indeed quite a simple procedure. Each component of the approxi­
mation is the outcome of the convolution of the original signal f(x) at its full
resolution with the scaling function cP,(x) , followed by a subsampling with a
rate r. The scaling function acts as the kernel of a low-pass filter. This relation­
ship is made explicit in the following section.

2.4.1.3. The Pyramid Generation of Approximations

The various discrete approximations of the input signal can be obtained
recursively and hierarchically from one another through the following pro­
cedure.

Let H be the filter having impulse response h given by the convolution of
cP\(x) with cP1/2(x) , and Hm the mirror filter of H with impulse response
hm(k) = h (- k), V kEZ. Then the discrete approximation at resolution r can be
obtained from the approximation at resolution 2r by convolution with the filter
Hm and subsampling by a factor of 2. By using the notation introduced by
Burt,60 indicating the convolution operator with (*), it can be stated more con­
cisely as

(2.5)

where [.] t 2 indicates a subsampling by a factor of 2 of the signal contained
between brackets.

The discrete filter Hm is also known as a generating kernel. It depends
only on the sampling function. The choice of the subspaces V" and conse­
quently of the scaling function and generating kernel, discriminates among the
possible multiresolution representations. In Section 2.4.2 we consider the case
of Gaussian approximations. The peculiarity of the wavelet scaling functions is
due to their orthogonality. As a result, the filter H(w) is also a conjugate filter:

IH(O)I = 1; h(n)=O(n- 2) n~OO (2.6)
IH(w)1 2 + IH(w+ 7T)I2= 1

which is a sufficient condition for the property of completeness, described in
the following.

An extensive study of the properties of the such filters is given by Millard
and Pau1. 55

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 39

2.4.1.4. The Detail Signal and Wavelet Decomposition

The multiresolution approximations f/x) of the original f(x) are obviously
a set of incomplete replications of the input signal. The information contained
in them is not an alternative way to represent the original data in multiresolu­
tion. Wavelet decomposition achieves this result. It consists of a multiresolu­
tion representation of f(x) which is complete and not redundant.

Wavelet decomposition is based on the detail signals. A detail signal dr(x)
at resolution r consists of the difference between the approximations f2r(X) and
fr(x). Just as the subspace Vr has a basis for the decomposition of fr(x), so the
subspace Ur, which is the orthogonal complement of Vr in V2r, has a basis for
the decomposition of dix).

The generating function "'(x) of these basis is called the orthogonal wave­
let and is derived by the scaling function cf>(x) through the following relation­
ship in the Fourier domain:

(2.7)

where G(w)=e- iw H(W+7T)
The wavelet basis is a set of bandpass functions. The relationship between

the wavelet basis and the scaling function basis, as highlighted in (2.7), shows
that the filter G is a high-pass filter. G and H together are a quadrature mirror
filter pair. 55

The detail signals dr(x) can be described similarly to the approximations
//x) as a set of discrete samples d~ obtained by convoluting/(x) with the proper
wavelet "'r(x), followed by subsampling.

The orthogonal wavelet representation of a signal over L resolution levels
is

(2.8)

The representation includes the approximation/~-L at the coarsest approxima­
tion chosen and the detail signals on each finer level, up to the next-to-Iast
d~ -1 (l being the resolution of the original signal).

The discrete signals in this representation contain a number of values equal
to the samples of the input signal. This property (nonredundancy of the repre­
sentation) is due to the fact that the wavelets "'r(x) are on an orthonormal basis.

Mallat shows that there exists a multiresolution algorithm to recursively
derive the detail signal d~ at resolution r from the detail signal d1r at the finer

www.manaraa.com

40 Chapter 2

resolution 2r. Again, the relationship is the convolution with the mirror filter
Gm derived from G, followed by subsampling.

The wavelet representation is complete. The original signal can be recon­
structed with an iterative procedure. Each finer approximation f~r is obtained
by the coarser one and by the detail signal: the two discrete series of values are
expanded and padded with zeros (denoted by [.] t 2), convoluting the expanded
signals respectively with the low-pass and high-pass filters Hand G, and add­
ing the outcome of the convolutions:

(2.9)

2.4.1.5. Bidimensional Wavelets for Images

The wavelet transform can be extended to higher-dimensional spaces
L 2(Rn) , n> I, with straightforward modifications of the monodimensional case.
The modifications adapt the definitions of multiresolution vector spaces, scaling
functions, approximated signals, associated wavelet functions, and detail sig­
nals, along with the pyramid algorithms for the recursive construction of the
approximations and for the exact reconstruction of the original signal from
wavelet decomposition.

The bidimensional case is especially interesting when the chosen scaling
function is separable: ~(x, y) = cfJ(x)cfJ(y). Mallat shows that in such a case the
wavelet basis for L2(R2) consists of the following three bidimensional wavelets:

Such a ternary basis emphasizes image elements along the cardinal directions.
The bidimensional wavelet decomposition partitions the frequency spec­

trum into four areas: a low-frequency domain (associated with the coarse repre­
sentation of the original signal), a domain containing energy in the high fre­
quencies for horizontal transitions (associated with W2), a domain containing
energy in the high frequencies for vertical transitions (associated to WI)' and a
domain containing energy in the high-frequency diagonal transitions (associated
to W3).

The pyramidal algorithm used to build the wavelet decomposition from
the original signal (coarse approximation plus detail signals) and the expansion
algorithm used to reconstruct it are based on the application of the separable
conjugate quadrature mirror filters G and H introduced in the monodimensional
case. This means that the discrete bidimensional signals are derived by a first
convolution along the rows, then by discarding every other column, by a con-

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 41

volution along the column, and finally by discarding every other row. When
the kernel of the chosen filters is very small, a direct bidimensional pyramid
implementation is possible. We will consider this situation in the special case
of the Haar transform in Section 2.4.4.

2.4.1.6. Related Representations

Within the context of signal theory, independent research has produced
other multiresolution signal representations based on quadrature mirror filters.
Adelson and Simoncelli54 have studied a number of orthogonal pyramid trans­
forms based on variously shaped generating kernels. Besides separable QMF
with supports in the range of five to nine tapes, they also consider nonseparable
decompositions, such as those derived from hexagonal tessellated images, and
the so-called quincunx pyramid, which instead partitions the frequency spec­
trum into nested diamonds and squares.

Relaxing the requirement of orthogonality while keeping the property of
completeness in signal reconstruction makes other pyramid transforms possible.
The Laplacian pyramid by Burt39 is the most popular. It is covered in detail in
Section 2.4.3.

2.4.2. Gaussian Pyramid

A common multiscale representation is the Gaussian pyramid. The advan­
tages of this representation range from the mathematical properties of the
Gaussian function to correspondence with an early vision operator in humans.
As stated by many authors the appealing mathematical properties are that the
Gaussian function can be iteratively built on the basis of the simplest functions
exploiting the central limit theorem (Wells56 explicitly addresses this property
to obtain the Gaussian function by using a cascade of uniform filters). This
being a two-dimensional rotational symmetric function, it not only maintains
its shape in the frequency domain, but it is also decomposable in the product
of two monodimensional Gaussian functions; it is the only filtering function
that, by operating in coarse-to-fine mode, preserves the extrema: maxima and
minima are never removed; eventually new ones can spring out. 57 In particular,
as proved by Yuille and Poggio, Gaussian filtering "does not create generic
zero crossing as the scale increases. ,,58 The importance of Gaussian-like opera­
tors in the early vision phase was first highlighted by Marr and Hildreth,59 who
proposed the adoption of a sequence of Gaussian filtering with module M = 1.6
in order to prepare the "primal sketch."

The Gaussian pyramid represents images in multiresolution by a sequence

www.manaraa.com

42 Chapter 2

of low-pass filtered images {Go, G1, G2 , G3 , ..• , Gn} obtained by convolut­
ing the original image with a set of Gaussian kernels that differ in size by
multiples of 2 and regularly subsampling by discarding a number of rows and
columns equal to 2i - 1. According to the multiresolution theory of Mallat, this
pyramid is a multiresolution approximation built on a nonorthonormal basis:
many of the analytical derivations which follow can be easily brought back to
the wavelet framework. We shall refer to the series {Go, G1, G2 , G3 , ••• , Gn}

as the Gaussian pyramid G. The lowest level Go is the original image I. If 1
has equal linear size of 2n + 1 pixels, then the complete pyramid will have just
n + 1 levels (more generally, the same pyramid data structure of n + 1 levels
can be constructed from an image of M 2n + 1 rows and N 2n + 1 columns, M
and N being integers).

For h > 0, Gh is given by

r.s= +kh

Gii,j) = LL Wh(r,s)Go(i2h - r, j2h - s) '<th, lhn (2.10)
r.s= -kh

where Wh is the hierarchical kernel corresponding to level h, and 2kh + 1 is its
linear spatial dimension.

Still using the notation introduced by Burt,6O the same expression in terms
of the convolution operator (*) can be stated more concisely as

(2.11)

where [.] i 2h indicates a subsampling of a factor 2h of the image contained
between brackets.

The most convenient way of constructing G is to iterate the generation
from each level h to the next h + 1 by convoluting Gh with the same low­
pass filter w, which is called a generating kernel and discarding the even rows
and columns:

(2.12)

The selection of w is a very important issue; three main aspects must be
considered: its extension, its shape, and its computational cost.

• The width of the support used to build each new level (receptive field)
is defined as a trade-off between precision in kernel shape definition and its
own computational cost, obviously, also on the basis of original image quality

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 43

and of the tasks of analysis at hand. The hardware support built for this purpose
up to today ranges from the 2 x 1 or 1 x 2 array kernel of the nonoverlapped
bin pyramid (see Section 5.2.4.4) to the 5 x 5 kernel of some multiresolution
systems (see Chapter 6). In what follows, we refer to this last array size with­
out explicit annotation. Note that, the effect of maintaining constant w is to
double the equivalent number of pixels of the original image for each linear
dimension when generating each new level.

• The solution of iterating the construction of G from level to level using
a fixed generating kernel is considerably more efficient than the original convo­
lution with I, but this means that the actual equivalent shape of the kernel is
changing from level to level and can only coarsely approximate the assumed
Gaussian shape (this is particularly true for the lowest levels of the pyramid).
A more precise analysis of this aspect is given in the next section; nevertheless,
let us anticipate that the most crude approximations correspond to those levels
for which human eyes are also mostly insensitive to contrast perturbations.61

• Nand 2k+ 1 being respectively the linear size of I and of the generat­
ing kernel, the cost of the Gaussian pyramid construction is on the order of
N2k? To limit this computation cost, following Burt,39 w is chosen with four
constraints. First of all it has to be small and separable:

w(r,s) = w(r)w(s) (2.13)

Second, each monodimensional component is normalized:

k

~ w(r) = 1 (2.14)
r= -k

Third, each component is symmetric:

w(- r) = w(r) , -k:'5r:'5k (2.15)

Finally, each pixel of the previous level must give the same total weight for
the construction of a new level (principle of equal contribution). Considering
discard when subsampling the even rows and columns, this means that the total
weight of the odd position in the kernel must equal that of the even position:

www.manaraa.com

44

1
W(O) + 22">.v(2r) = 22: w(2s - 1) = 2'

r s

1 <2r$k, 1$2s-1$k

Chapter 2

(2.16)

where r and s are integers, and the first three constraints have been satisfied.
In particular, for k=2, w(1)=w(-I)=0.25, and w(2)=w(-2)

= 0.25 - w(0)/2: just one independent variable remains; its influence on the
kernel shape and on the general properties of the resulting pyramid will be
analyzed for this special common case at the end of the next section. From the
computation cost point of view, the construction of the complete G pyramid
requires approximately 10 operations per pixel of the original image.

2.4.2.1. Equivalent Weighting Function

In order to study the analytical properties of the ensuing pyramid, let us
investigate the relationship between the hierarchical kernel Wh and the generat­
ing kernel w. The explicit relationship between successive levels Gh and Gh~ I
[given in compact form in Eq. (2.12)], under the hypothesis that all subsam­
piing operations will be performed at the end of the convolution steps, and
with the coordinate (i, j) referred to Go. is

r,s= +kh

Gh(i, j) = 2:2: w(r,s)Gh_1(i - r2h~ I, j - s2h- l) (2.17)
r,s=-kh

Vh, 1 hn

that is. w component spacing is doubled from level to level as is its linear size.
The expanding kernel Wh applied to level h - 1 to construct level h can

be expressed in analytical form as follows:

{ (r s) for rand s multiples of 2h - 1

wh(r,s)= w 2h-i'2h- 1
o otherwise

Vh, lhn (2.18)

The equivalent weighting junction60 which results from the cascade of
these expanding kernels is then expressed by the following hierarchical kernel
Wh:

www.manaraa.com

WI eo ~
W2

40
IS

30

10

20

10

0 .. ·3 ·2 · 1 0 3 7 8

a Spo.uaJ I'Osltlon b Spo.uaJ Pooltloo

W. W.8

0

c
L2 16 ·l8 ·12

spatlal_
·32 · 16 0 18 32

d spauaJ_

LI 80..---------------, ~
30

~

20 10

0

·10
... ·3 -2 ·1 0 -8 ·7 -8 7 8

e Spo.uaJ I'OsltJon
Spa.uaJ Pooltlon

L. 8

L, a

a
2

2

0

·2

..
·18 -8 0 16

9 Spo.uaJ I'Osltlon h Spa.tlaIl'Osltlon

Figure 2.7. The first four levels of the equivalent weighting functions of G (a-d) and L (e-h)
constructed iteratively with Vi 1(0) = 0.4 and under the constraints represented by Eqs. (2.13-2.16) .
Note that in the fourth level the curves closely resemble the Gaussian density function and the
common Laplacian operator used in edge detection.

www.manaraa.com

46 Chapter 2

(2.19)

[remember that Wh is the kernel that, if convoluted directly with the original
image /, gives the same values at level h achieved by the h iterations (2.18)].
The resulting characteristics of G can be analyzed on the basis of this equation,
which summarizes the effect of the iterative construction. In Figure 2.7a-d the
spatially normalized plots of the hierarchical kernels WI' W2 , W3 , W4 are given
for k= 2 and W(O) =0.4 [consequently, w(1) = we -1) =0.25 and w(2)
= w(- 2) = 0.05]. As can be seen, the higher the level the closer the resulting
shapes to a proper Gaussian function (it is claimed that for h~ 00 the hierarchi­
cal kernel becomes a Gaussian function).

The importance of good selection of the generating kernel parameters is
indicated in Ref. 39, where the case for k = 2 is analyzed in detail. As cited
earlier, in this case the constraints expressed in Eqs. (2.13)-(2.16) leave just
one independent parameter that can be selected by assigning a value to W(O).
The paper quoted introduces the concept of how the overall characteristics of
G closely depend on this assignment. In particular, it is shown how the values
0.5-0.4 correspond respectively to an equivalent weighting function with trian­
gular (W\ = {0.5-0.25-0.0}) and broadly Gaussian shapes on all levels of the
pyramid. Conversely, for compact coding purposes it can be shown that the
best value of the generating parameter is W(O) = 0.6, and it can be shown as
well that with a suitable quantization process, a simple (from the computational
point of view) and effective coding scheme can be derived39 from the conse­
quent values in G.

2.4.2.2. The Expand Operator

An operator which reverses the generating kernel w must be introduced in
order to congruently compare data resulting at two different levels at the high­
est detail. This operation (which has been called a projection by Hanson and
Riseman,62 while here we follow the Burt denomination) can be defined, as in
(2.11), in terms of the convolution operator (*) as follows:

\/h,O::s;h (2.20)

where W' h.t is called an expanding kernel, and [.] t zt explicitly indicates the
interpolation by a factor 2t of the initial image G h , so the resulting sizes of Gh,t

will be {2W + 1, 2tM + I} ({N + 1, M + I} are the sizes of Gh). Note that

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 47

Gh,O=Gh, and Go,o, Gl,I' G2,2' ..• , Gn,n will have the same sizes as the
original image I.

Just as for the hierarchical kernel, the most convenient way of constructing
Gh, t is to iterate the interpolation operation step by step, doubling in the linear
spacing dimension:

Vr, lSrSt (2.21)

This can be implementedl2 by padding with "zeros" (inserting new even
rows and columns with null samples) and convoluting the resulting image with
a suitable filter w'. Explicitly, the first step is

for i and j even

otherwise
Vr, 1 S rS t

(2.22)

The expanding kernel w' is usually selected on the basis of the same con­
straints of the generating kernel as expressed by Eqs. (2.13)-(2.16). Thus, the
second step will be simply

Vr, 1 SrSt (2.23)

where the factor 4 is introduced to compensate for the fact that three out of
four samples in Oh r are zeroes.

2.4.2.3. Boundary Conditions

For generating and expanding data some care must be taken regarding the
border of the image, especially when the kernels are large. The usual approach
is to extend the current image Gh in the border, preserving the continuity of
the image itself and of the first k-1 derivatives. As a common example, for
k = 2, Gh is augmented by two rows or columns for each edge border, in which
values are assigned by reflection and inversion across the edge. 61 Since Gh(i,O)
(0 sis N) are the first columns, the values assigned at the two left extra col­
umns will be

I Gi~, -1): 2Gh(~' 0) - Gi~, 1) I
Gh(z, -2)-2Gh(z, O)-Gh(z, 2)

Vi, OsisN (2.24)

www.manaraa.com

48 Chapter 2

In this way the first derivative is constant at the left boundary (second deriva­
tive is zero). The behavior on the other sides is derived from this.

2.4.3. Laplacian Pyramid

In G the image is reproduced many times by reducing the frequency con­
tent one octave at a time with low-pass filtering step by step. An alternative
image representation, popular in the image processing community, is given by
the Fourier transform, which uses the spatial frequency distribution to charac­
terize the image content. Both these image data representations undersupply
some frequent analyses: the Fourier transform is inappropriate when the spatial
location of patterns is critical; the Gaussian pyramid is unsuitable when tasks
require spatial-spectrum-based analysis. A pyramidal representation which re­
tains both spatial localization and spatial frequency composition information is
given by a generating kernel which implements a local bandpass filtering oper­
ation.

As for G construction, operators of identical shapes, but with different
scales, are applied step by step. As in the quoted case, these operators are local
so as to preserve spatial information and are localized in the spatial frequency
domain by reducing one octave both the frequency center of the bandpass and
the bandwidth (i.e., this is achieved by doubling the generating kernel linear
size in the spatial domain).

From the cost computation viewpoint the cheapest solution to achieve such
a representation is to manipulate G (which is already selective in spatial fre­
quency content). This solution has a general framework in the difference of
low-pass transform (DOLP).63 Since the first octave of the spectrum is directly
given by Gn , the levels of the bandpass pyramid L={Lo, L 1, L2 , ••• , Ln},

may be defined in terms of the low-pass pyramid in this way:

Ln=Gn
Lh=Gh-Gh+1,1 Vh, Osh<n

(2.25)

The pyramid L corresponds closely to the wavelet decomposition of Eq. (2.8).
However, note that this representation is redundant by one third, because its
generating functions are not orthogonal.

2.4.3.1. Equivalent Weighting Function

Even in this case, it is convenient to define the equivalent weighting func­
tion as a kernel that if convoluted directly with the original image I gives the

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 49

same results as Eqs. (2.25). It is easily derived that this function is given by the
difference of the Gaussian-like functions of two consecutive levels, precisely:

Vh, O:::;h<n (2.26)

in which the hierarchical kernels are given by Eq. (2.19) (under the hypothesis
that the subsampling operations are performed at the end of the sequence of
convolution steps required to achieve each G component). In tum, they repre­
sent two equivalent weighting functions of the generation of G. The kernel w'
is one of the two suggested by Burt et al. 12 and has been called RE (reduce
and expand) because the second term of the kernel in (2.26) is expanded after
decimation. An alternative is presented in detail in Chapter 6, which does not
require the expansion operation: the subtraction is performed when building the
next Gaussian level before decimation; this second solution is called FSD (fil­
ter, subtract, and decimate). Nevertheless, with the FSD solution the property
of completeness in image recovering (that will be subsequently described) is
lost. Hence, in what follows we will always refer implicitly to the RE solution.
Because of this interpretation of a set of differences between pairs of successive
multiresolution Gaussian representations, with each one being more detailed
than the next, the sequence obtained by (2.26) has been referred to as a pyra­
mid of error images. 39

These resulting functions closely resemble the well-known Laplacian oper­
ator V2, introduced by Marr and Hildreth59 for edge detection purposes, that
operates in humanlike mode, following a multiresolution lateral inhibition ap­
proach. This is the reason why the sequence L is referred to as a Laplacian
pyramid. In Figures 2.7e-h the spatially normalized plots of the first four hier­
archical kernels are given for k= 2 and W(O) = 0.4. In order to facilitate the
computations these solutions are pursued following the FSD approach. The
behavior is similar to that of the G case: note that the higher the level the
closer the resulting shapes are to those of the Laplacian operator.

2.4.3.2. Original Image Recovering

From Eqs. (2.25) and (2.20) it can be easily derived that the original
image I can be exactly recovered from the Laplacian pyramid by expanding
and summing all levels:

www.manaraa.com

50

n

I=Go= LLh,h
h=O

Chapter 2

(2.27)

i.e., the Laplacian pyramid is a complete image representation (like the wavelet
representation), and the local operators of many scales but identical shapes,
introduced thus far, serve as the basic functions in this representation. 64 Fur­
thermore, this representation enhances image features like edges, which playa
very important role in image analysis.

Another procedure to recover the original image more efficiently from the
computational point of view is given by reversing the order sequence of the
Laplacian pyramid generation. The topmost level Ln is expanded and added to
Ln - 1, then this last one is expanded and added to Ln - 2, and so on, until level
o is reached. By adding Lo, is added to the original image until Go is achieved.

2.4.3.3. Remarks on L

The use of multiresolution for detecting edges is a well-established ap­
proach and can be traced to the work of Roseneld and Thurston.65 The persis­
tency of real edges (as opposed to fake ones) through the resolutions as high­
lighted by the Laplacian operator has been suggested as the key issue for scene
segmentation by Witkin66 in his "scale-space" approach.

The topmost-to-base process of recovering Go can be applied to achieve a
progressive image transmission39 in which initially a coarse sketch of the image
content is given, following which, if required, a subsequent transmission pro­
vides the details at the requested resolution. Moreover, it has been proven that
humans are more sensitive to error in the low- (and in medium) spatial-fre­
quency components and they are relatively insensitive to the high spatial fre­
quencies. But three fourths of the data of L belongs to Lo, and fifteen sixteenths
to the first two levels. On this basis, a quantization scheme which takes care
of this different behavior was introduced by Burt in the cited paper. In practice,
for Lo and the first levels, where the sample density is fine, coarse quantization
levels are applied (and consequently a smaller bit-to-pixel ratio); conversely, at
the coarse sample density of the higher levels, finer quantization levels are
needed. In Ref. 39 a few common examples are given, in which the image
quality is guaranteed with data rates around 1 bit/pixel (and the corresponding
mean square error of less than 1 %). For image motion analysis purposes it has
been found 13 that a ratio of 3 bits/pixel does not noticeably degrade the com­
puter flow field.

Some conjectures that the human visual system uses these kinds of repre-

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 51

sentation have been reported in the scientific literature. 6O This representation
has been effectively applied in applications, like image mosaicking,6l in which
the sensitivity of the human vision constitutes the figure of merit for the evalua­
tion of the results.

2.4.4. Haar Pyramid

Though defined independently of the multiresolution approach, the sim­
plest orthogonal pyramid transform is the Haar transform. 67 Originally, it was
defined in the monodimensional case; it has been extended with some modifi­
cations to the bidimensional domain. 68

In this last version the transform is a wavelet decomposition, based on the
three generating wavelets fl' f2' f3' shown in Figure 2.8a. This is an instance
of a very simple wavelet transform, since the wavelet coefficients use only the
three values (1, 0, -1). Figure 2.8b shows the first 64 basic functions as pro­
duced by the three generators at the first three resolution levels. The gen­
erators are sensible to step edges in images, and this has stimulated a cer­
tain interest in such a transform for image processing and coding since its first
introduction.

The definition of the Haar transform in the bidimensional discrete space is
straightforward. A square image of 2n x 2n pixels has a discrete Haar transform
at n + I resolutions (including the dc component). At any scale i (0:5 i:5 n - I,
excluding the de component), there are 22i functions having a support of 2 2(n-i)

pixels and taking on, within their support, one of the two values ± ll2(n-i). A
proper rescaling of coefficients according to the resolution i allows us to code
the transform with elementary arithmetic based on the three coefficients 1, 0,
-1.

There are three motivations for introducing the Haar transform for vision
problems: the first is that it is a wavelet transform with spatial and frequency
localization; second, the support of the generating kernel perfectly matches the
quaternary-tree data structure; third, the computational cost is reduced to less
than three additions or subtractions per pixel of the input image.

2.4.4.1. A Pyramid Implementation

The recursive use of the generators at different resolutions allows us to
structure the computation of the coefficients hierarchically. Two approaches are
possible: the former builds a multiresolution representation by averaging with
a 2 x 2 kernel and then computes the transform conceptually in a single step at

www.manaraa.com

52

b

a

.mm~

••••
~.~m
~ ••

~m~~m ••

Chapter 2

~~m.m •••
~~m~.m ••
de

IJM~mm~
o 1

Resolution
2

Figure 2.S. The bidimensional Haar transform as a wavelet: (a) the three generating wavelets;
(b) the first 64 basis functions; according to the resolution they are grouped into three families of
4, 12, 48 elements; the coding of coefficients is black = 1, dashed = 0, white = -I.

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 53

all resolutions; the latter combines the building of each new reduced resolution
image with the computation of the transform.

A previous work69 has shown how to implement the Haar transform using
a quad-pyramid data structure. For an NxN input image, let us consider a
quaternary-tree data structure of n + I levels (n = log2 N), where each leaf (node
in the base) corresponds to one pixel of the input image. Note that at each
level each node interacts during the computation only with its siblings, while
hierarchical connections are used for interlevel data transmission. The algo­
rithm for the direct Haar transform (DHA) (slightly modified here in the use of
the coefficients) consists of two main phases.

1. Construction of a set of images at different resolutions. Except for the
base, which stores the full original image, each node in the other levels of the
pyramid builds a value which is the weighted sum of the pixels stored in its
four children. By choosing all weights equal to 0.5, the formulation of the
direct and inverse transforms as a local computation on all levels (second step)
is identical. The setting up of the averaged images takes n steps.

2. Local computation of the Haar operator. In each level, 2 X 2 blocks of
nodes are the local support of the operator. If A, E, C, and D are the values of
the pixels in each block (respectively of the node located in the block at posi­
tion northwest, northeast, southwest, and southeast), three output values, {3, y,
13, are computed according to the generators fl' f2' and f 3• They are stored in
the northeast, southwest, and southeast node of each block:

[±J[EJ
~ ~

{3 =! (A - B + C - D)
y=! (A + B - C - D)
13 =! (A - B - C + D)

(2.28)

The local computation is performed on each level of the pyramid (includ­
ing the base), and the Haar transform consists of the collection of all sets of
({3, y, 13) values, plus the average value a stored in the apex of the pyramid
(see Figure 2.9). We note that, while the multiresolution averaged version of
the image is redundant by roughly a factor of 1 (the quaternary-tree data struc­
ture is made up with (4N2 - 1)/3 nodes), the transform is defined by exactly N2

values, though distributed on the different levels: iJV2 in the base, KW2) on the
next level, etc.). Moreover, note that the values computed according to this
algorithm do not require rescaling but already comply with the orthonormal
condition in the discrete case.

The inverse Haar transform (IHA) is a top-down algorithm. It assumes that

www.manaraa.com

54 Chapter 2

/ :7~
I)~

/ 717/ 7~
L) ~/) ~

/ 7~/7~
I') ~I') ~

Figure 2.9. The layout of the quaternary-tree-based Haar transfonn of a 4 x 4 Image Empty
boxes denote unused nodes

the values to be anti transformed are stored in the levels of pyramid according to
the outcome of the DHA. Starting from the apex, the value of the parent (the
dc component) is copied in the northwest node within the 2 x 2 block of its
children; let us denote such a value by a. The (a, (3, ,)" 8) values in the block
are then transformed according to the following equations:

A=i(a+{3+,),+8)
B=i(a-{3+,),-8)

C=i(a+ (3- ')'- 8)

D =i(a- (3- ')'+ 8)
(2.29)

The same three generators Yl , Y2, and Y3 used in the direct transform are
applied to the reconstruction process, plus a Yo generator to produce the aver­
age coefficient A. At the next stage of the top-down process, the A, B, C, D
values are propagated downward to become the a values of the blocks in the

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 55

level below. When the propagation of the data and the computation reach the
basis, the IHA is complete and the original image is reconstructed in the base.

An alternative solution follows the approach of using the same generating
kernels step by step. The DHA computation can be recast into a pipeline of
processes, each active on successive levels of the pyramid starting from the
base. These processes combine the construction of the averaged version of the
image and the local computation into a local transformation followed by a data
reduction. With the same conventions for naming the values within each 2 x 2
block, the local transformation carried out consists of the three generators Y1,

Y2 , and Y3 of Eq. (2.28) plus the averaging generator Yo, yielding a:

a=i(A+B+C+D) (2.30)

During the reduction step, the a value of each 2 x 2 block is sent to the
corresponding parent node, thus generating the upper-level image. The process
of local transformation and reduction is iterated till the apex is reached.

2.4.4.2. Other QMF Transforms

As previously mentioned, the Haar transform is an instance of a wider
class of orthogonal transformations, the quadrature mirror filters (QMF). For
such filters, both odd-type and even-type kernels have been investigated. In
order to obtain good performance in frequency discrimination, one-dimensional
kernels of nine taps and larger must be used. 54 Concerning this point, the two­
tap shape of the Haar basic functions is considered poor.

The interest here for quadrature mirror filters is due to their intrinsically
hierarchical nature, as mentioned in Section 2.4.1. They give rise to pyramid
orthogonal algorithms relying on a wide support combined with a standard qua­
ternary pyramid with a reduction factor of 4. They use therefore a variation of
the pyramid structure known as an overlapped pyramid; the value of a parent
node is obtained by a weighted average of all its children, and the sets of
children of two neighboring nodes are not disjoint. This condition ensues when
the support used to generate a node at the next resolution level is larger than a
2 x 2 block. Quadrature mirror filters with a 3 x 3, 5 X 5, ... bidimen­
sional kernels are instances of the case (obviously, even-sized kernels also have
the same effect, starting with 4 x 4).

The quad-pyramid computer (see Chapter 5) has been shown7o to be able
to build overlapped pyramid representations of any shape without appreciable
overhead, both in the bottom-up and top-down processes.

The data-parallel implementation of the Haar transform is therefore the

www.manaraa.com

56 Chapter 2

simplest case of a much wider class of QMF transforms for which the pyramid
is the best theoretical data structure. Besides it can be used very profitably for
foveation, tracking, and general focusing strategies as well as for image
coding.

2.4.5. Feature Pyramid

In an ordinary pyramid, images are represented by a sequence of copies
of the original data in which resolution is decreased by regular steps, from the
base (containing the original image) toward the apex. Many authors (for a sur­
vey see Dye~2), extended the pyramid concept to other points or local proper­
ties, like color, edge density, energy measure of any feature detector (see the
next section for an example), etc.

Level 4
(e.g. region labeUng)

Level 3
(e.g. curvature)

Level 2
(e.g. texture boundary)

Levell
(trasfonned Image
e.g. texture property)

Level 0
(Image)

Figure 2.10. A four-level example of a feature pyramid. The base is the original image. The
successive layers show some steps of a segmentation process based on a texture analysis. Namely,
the first level is the image resulting from a transformation produced by a texture detector; the
second and the third, respectively, represent the border and the curvature of the boundary of the
segments; the fourth is the regions identified and labeled.

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 57

Color pyramids, that in general construct a pyramid (Gaussian, Laplacian,
etc.) for each primary color, were introduced in 1980.71 A second very general
example of feature pyramid is built on the energy measure of a feature detector.
Having in some levels k a local description of the density of a property given
by a feature f, the Gaussian pyramid built over this level Gk will give the
Gaussian integration of the feature f level by level on a larger and larger sub­
array. The final decision on the existence of a scale-dependent property can be
based on the value of the integration Gk•

Granlund and Arvidsson in 1983 (Ref. 72) introduced the term feature
pyramid for the hierarchical heterogeneous data structure shown in Figure 2.10.
The base of the pyramid is the original image. The local feature detector pro­
duces the first level (it does not matter what kernel size and decimation are
applied). A second, generally different, operator is applied to this level to pro­
duce the successive level. From level to level different transformations in a
bottom-up sequence produce new local evidence of the properties of the origi­
nal images. The bottom-up construction represents the partial result at the dif­
ferent levels of the problem. The levels form a "semantic" pyramid, and each
one contains information about properties or features that are derived from the
preceding levels. In fact, the top-down activity shown on the left of the figure
represents a feedback control of the higher levels over the operations in execu­
tion on the lower one. A system (GOP-300) which is specialized in this ap­
proach for image analysis was designed and commercialized by the quoted
authors. A few details on this machine will be given in Section 6.4.

2.5. COARSE-TO-FINE SEARCHES

As mentioned, when a property is spatially invariant across the scale, it
can be effectively (from a computational point of view) applied to a coarse-to­
fine approach. It consists of two basic steps: (i) the selection of a low-level
scale to hypothesize the presence of what we are looking for; (ii) the zooming
in on the exact position at a higher scale to achieve evidence of the presence
or absence of the target.

The determination of the optimum level at which the search has to start
depends on the characteristics of the task at hand. Note that this is a critical
selection; instances missed at this level will never be recovered even if there is
substantial evidence at the finer levels. In general, the selection obviously de­
pends on the original spatial resolution; e.g., the maximum shift in position
allowed to the target in the search space, etc. For reasonable values of these

www.manaraa.com

58 Chapter 2

factors, the number of levels used turns out to be less than or equal to 3 or 4,
which corresponds to a data reduction factor of at least 64 or 256 (to which
obviously a higher speedup may correspond if the task at hand is more than
linear on the amount of data).

Once the result of the first screening of the region of interest is obtained,
the second phase of refinement has to be performed; here the best strategy is
to proceed top-down through iterative rearrangements; that is, the refinement
must be accomplished step by step at every intermediate level until the maxi­
mum resolution level is reached. At each level the confidence of the selection
is checked, and the spatial position of scrutiny is refined by checking (e.g., by
thresholding a suitable figure of merit) the g near neighbors corresponding to
the position of the previous level. The computation overhead required by the
refinement phase is dependent on the number of resolution levels, s, involved.

Considering the matching example introduced in Section 2.3, let us sup­
pose that we are looking for targets sized T2 in the base of the pyramid (the
cost of computation of a direct correlation will be N2T2). Since s is the number
of successive scaled images, the cost of computation of the first step will be

(2.31)

Since p is the number of regions of interest detected, the additional factor
for the focusing processes is

(2.32)

Even if this second component increases with the number of reductions in
resolution, the overall cost monotonically decreases for reasonable values of s:
for M = 2, p = 8-16, and g = 10 the gain is by a factor of 4 for s = 2 and around
15 and 200 for s equal to 3 and 4, respectively.

Another feature of the coarse-to-fine approach is flexibility; if the evidence
achieved is sufficient, the refinement phase can be stopped before reaching the
maximum resolution level. Once again the computational speedup can become
remarkable, even if a certain penalty is paid in precision.

The first, and best-known, example of a coarse-to-fine process is the edge

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems S9

detection algorithm introduced by Kelly?3 in 1971. This algorithm can be con­
sidered a general paradigm or the focusing procedure and is described in detail
in the sequel. It is composed of the two functions edges and refine. In the first
at an initial level I, all the pixels are checked to verify if the feature detector
(in this case the function boundary) is greater than a given threshold. Only in
these cases is the second function refine called. The number of edge points is
obviously a small fraction of the total number of pixels in level I. Only in the
detected positions does the procedure refine look for the precise location of the
edge recursively, till the finest resolution is reached, inspecting the subarray of
size template.

void edges (pyramid *inp, pyramid *outp, int I)
{ int ij;
double edge;
for (i=O; i<pow (2,1); i+ +)

{ for(j=0;j<pow(2,I);j++)

}

{ edge = boundary (inp, I, i,j);
store (oupt, I, i,j, edge);
if (edge> threshold)

refine (inp, outp, I, i, j);

void refine (pyramid *inp, pyramid *outp, int I, int i, int j)
{ int di,dj;

double edge;
i*=2;
j*=2;
/*1 = 0 in the apex */

if (I + + < maxI)
{ for (di=O; di<=template; di+ +)

{ for (dj = 0; dj < = template; dj + +)
{ edge = boundary (inp, I, i+di,j +dj);

store (outp, I, i+di,j+dj, edge);
if (edge > threshold)

refine (inp, outp, I, i, j);
}

www.manaraa.com

60 Chapter 2

2.6. IMAGE FLOW DIAGRAMS

The image flow diagrams introduced here are graphical sketches to illus­
trate pyramid image processing algorithms at a glance. The convention that is
here presented in an extension of one used by Burt et al. in several papers cited
in this chapter and more extensively introduced in Ref. 74. The paths of the
image data connect six basic component symbols: (i) buffers to store input,
partial results, and output data; in particular, a full data set buffer is indicated
by 0, and a region of interest inside it (windowing operation) by 0; (ii)
processing elements for filtering and point-dependent operations are represented
by a 0 containing an indication of the operation inside; furthermore, this sym­
bol represents both subsampling and expand operations; in these case ~ and
t appear, respectively, inside the circle in addition to a figure representing the

linear ratio between the data amount in output and input; (iii) dyadic arithmetic
and Boolean and comparison operations between images are represented by the
symbol" having inside the detail of the operation performed; (iv) pyramid
generations are represented by ~, and the type of generating kernels used are
specified (Gaussian, Laplacian, Haar, etc.); (v) delay operations are indicated
by n; the number of clock cycles of the delay are given inside the symbol;
(vi) the refinement operation, represented by>; the refinement is performed
up to the level reported outside the sign on the basis of a threshold.

2.6.1. Examples

To illustrate the use of image flow diagrams, we give some basic examples
of image processing tasks (Examples 2 and 3 are derived from Ref. 3).

2.6.1.1. Example 1

The first example is the well-known edge detection technique codified in
the C language in the previous section. The coding by an image flow diagram
is given in Figure 2.11a. The figure is self-explanatory: from the original image
a Gaussian pyramid is built, a function fk implementing the edge detector is
followed by the couple thresholding refinement to produce the contour image
at the maximum resolution.

2.6.1.2. Example 2

The second example is related to a detection or classification task based
on a single feature or pattern characteristic (template matcher, texture descrip-

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 61

a D'r---+I~ ·8~·~~-~D
G thk n Ic

b

c

d

Figure 2.11. Four basic paradigms for algorithms of image analysis expressed in image flow
diagrams: (a) a coarse-to-fine edge detector; (b) generation of integrated image feature sets; (c)
simplified change-energy measures in a video sequence; (d) muItiresolution labeling technique.

tor, spot detector, or others). Figure 2.11b shows the image flow diagram of
the four stages for the generation of the image measures of the feature at hand
for just one selected spatial band. In a first phase the Laplacian pyramid is
built, and a filter which is selective of the feature chosen is applied. At this
stage of processing, for each level of the pyramid, a point base measure is
obtained. An enhancement step follows, e.g., the squaring of the measured
parameter to prepare data for the final decision. Then, for the band(s) k that
best highlights the feature of interest, a Gaussian pyramid is built to form dif­
ferent local energy measures by integrating locally, with various window sizes.
The final result {Ek h}, represents a set of measures of the energy of the chosen
parameter for the given feature scale k and for different locations and window
extensions h.

www.manaraa.com

62 Chapter 2

2.6.1.3. Example 3

The third example regards a simplified algorithm for motion analysis per­
formed over couples of successive frames of a video sequence.75 Figure 2.11c
shows the image flow diagram of the five stages of an alerting procedure which
measures the "change energy" for just one selected temporal and spatial band.
In the first phase a difference image is formed by subtracting the current one
with a delayed one, to detect points in which something is changing in the
scene. Then the Laplacian pyramid is built, and a particular bandpass level is
selected on the basis of the target's size and velocity (for example, high-fre­
quency motion of leaves and grass or low-frequency motion of clouds or ob­
jects far away must not be detected; instead moving cars and humans must
be considered). An enhancement step follows, e.g., a square of the measured
parameter, to prepare data for the successive steps. Now, for the selected
band(s) k that characterizes the motion under investigation, a pyramid is built,
as in the previous algorithm, to integrate locally to form local change-energy
measures. The resulting energy, {Ekh}, can be used to guide the search for
the target.

2.6.1.4. Example 4

The fourth example is a labeling pyramid technique. The objective is to
label the border points, in each level of the pyramid, on the basis of the local
curvature. The method used is the one described in Ref. 76. It consists
of simulating a diffusion process: starting with an equal distribution of data on
the contour, a standard heat diffusion process is originated on the contour to­
ward the object inside (heat diffusion is supposed to be adiabatic with the
background). During the transitory phase, the values on the contour are
strictly dependent on the local curvature: in a few steps of heat propagation the
local "temperature" on the border supplies a robust labeling for several curva­
ture classes (the minimum number of labels was the five used in Section
2.2.1.3).

The first four blocks are what is used usually to construct a binary contour
pyramid. The lower branch of the two parallel paths shows the t-recursive step
of propagation P applied to all pyramidal levels. Here P just represents the
following near-neighbor operation, applied for each pixel which belongs to the
objects (T is null and so remains in the background):

(2.33)

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 63

where T, is the "temperature" at time i, K is the propagation coefficient, NNJ

represents the near neighbor in position j under the hypothesis of Figure 5.4,
and D is the number of near neighbors belonging to the object.

Finally the dyadic AND operator only selects the border pixels on which
a multilevel threshold is applied to obtain the final contour labeled pyramid.

2.7. GENERAL PLANNING STRATEGIES

As stated in the first chapter an architecture is something more than a
collection of elementary components. The goal of the designer is to gain perfor­
mance with minimum effort (cost) by properly integrating different units. In
designing a computer vision system some suggestions spring from knowledge
of the human visual system. The approach in this case follows a general plan­
ning strategy which permits limited resources to overcome very complex tasks.
The solution is achieved by means of a preanalysis, the result of which permits
us to reformulate the problem in completely different terms and computational
characteristics.

Figure 2.12 shows the basic framework of this planning strategy. On the
basis of the pyramid theory (wavelet, Gaussian, Laplacian, etc.) a multiresolu­
tion environment is implemented. A smart sensing of the information at hand
(outer cycle) is obtained with some specialized hardware consisting of a parallel
implementation of a simple operator on the total amount of data (total field of
view) at a low resolution. The objective of this peripheral (preattentive like)
operation is to select the areas to scrutinize.

At this point, working with the full capability of the system at the sophisti­
cated level of detail and by exploiting the a priori knowledge of what is going
on or by performing a fast detection of the salient features map, the scene
reality is interpreted and followed according to its own evolution.

When the a priori knowledge is insufficient, the detection of the spatial
feature map is very important and critical. In this case, specialized hardware
plays an important role. In fact, multiresolution systems supplying features at
different scales at low cost, maintaining information locality, supporting corre­
lation along the scales, and working both in coarse-to-fine and in
fine-to-coarse modalities, allow us to solve tasks which in many practical
cases overwhelm even the most sophisticated serial processor systems.

www.manaraa.com

64 Chapter 2

ffiE-A TIENTIVE PHASE

IMAGE

Figure 2.12. A planning strategy for a computer vision system. The outer cycle represents the
attention mechanism followed by the proper scheduling of system resources. The inner level insists
on the higher resolution areas but in limited regions.

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 65

REFERENCES

M A FIschler and 0 FIrSchem, The Eyes, the Brain and the Computer, Addison-Wesley,
Readmg, MA (1987)

2 L Uhr, Layered 'recogmtIon cones' networks that preprocess, classify, and descnbe, IEEE
Trans Comput C-21 (7), 758-768 (1972)

3 P J Burt, 'Smart sensmg' m machme VISIOn, m Machine V,SIOn Algorithms, Architectures
and Systems (H Freeman, ed), pp 1-30, AcademiC Press, San Diego, CA (1988)

4 H Freeman, Machme VISIOn approaches to automatic mspectlOn, m Progress In Image Analy­
SIS and Processing II (V Cantom, M Ferretti, S LevIaldl, R Negnm, and R Stefanelli,
eds), pp 601-615, World SCientific, Smgapore (1992)

5 L Uhr, Highly parallel, hierarchical, recogmtIon cone perceptual structures, m Parallel Com-
puter V,SIOn (L Uhr, ed), pp 249-287, AcademiC Press, London (1987)

6 J P Fnsby, Seeing IllUSIOn, Brain and Mind, Oxford UmvefSlty Press, Oxford (1980)
7 D H Hubel, Eye, Brain and VISIOn, SCientific Amencan Books, New York (1988)
8 F A Geldard, The Human Senses, Wiley, New York (1972)
9 L Maffei and L MecaccI, La VlSlone dalla NeurofislOlogla alia PSlcologla, A Mondadon,

Milan (1979)
10 D C Van Essen, Functional OrganizatIOn of the pnmate visual cortex, m Cerebral Cortex,

Vol 3, Visual Cortex (A Peters and E G Jones, eds), pp 259-329, Plenum Press, New
York (1985)

11 M Mlshkm, L G Ungerlelder, and K A Macko, Objective vIsion and spatial vIsion two
cortical pathways, Trends NeurosCl 6, 329-342 (1983)

12 P J Burt, C H Anderson, J 0 Smmger, and G van der Wal, A pipeline pyramid machme,
m Pyramidal Systems for Computer V,s,on (V Cantom and S LevIaldl, eds), pp 133-152,
Spnnger-Verlag, Berlm (1986)

13 D Marr, VISIon, Freeman, San FranCISCo (1982)
14 B Julesz, Early VISion, focal attention, and neural nets, m Neural Networks Theory and

ApplicatIOns (R J Mammone and Y ZeevI, eds), pp 209-216, AcademiC Press, San Diego,
CA (1991)

15 R Dodge, FIve types of eyes movements m the honzontal plane of the field of regard, Am
J PhyslOl 8, 307-329 (1903)

16 C Rashbass, The relationship between saccadic and smooth trackmg eye movements, J Phys-
101 159, 326-338 (1961)

17 D A Robmson, Control of eye movements, m Handbook of PhysIOlogy, Section I, The
Nervous System (V B Brooks, ed), Vol II, pert 2, pp 1275-1320, Amencan PhYSIOlogical
Society, Bethesda, MD (1981)

18 D Sagl and B lulesz, "Where" and "what" m VISIOn, SCience, 228, 1217-1219 (1985)
19 Th Wertheim, Penpheral Visual aCUity, Am J Optom PhyslOl OptlCS 57, 915-924 (1980)

[English translatIOn of the ongmal paper published m Z Psychol PhyslOl Slnnensorg 7,
172-187 (1891)]

20 E L Schwartz, ComputatIOnal anatomy and functional architecture of stnate cortex a spatial
mappmg approach to perceptual codmg, VISIon Res 20, 645 (1980)

21 P J Burt, AttentIOn mechanisms for VISIOn m a dynamiC world, Proc 11th Int Conf on
Pattern RecogmtlOn, Rome, I, pp 977-987 (1988)

22 C H Meyer, A G Lasker, and D A Robmson, The upper Illmt of human smooth pursUit
velOCity, V,SIOn Res 25, 561-563 (1985)

www.manaraa.com

66 Chapter 2

23. D. A. Robinson, Vestibular and optokinetic symbiosis, an example of explaining by model­
ling, in Control of Gaze by Brain Stem Neurons (R. Baker and A. Berthoz, eds.), pp. 49-58,
Elsevier/North-Holland, Amsterdam (1977).

24. A. Buizza and R. Schmid, Visual-vestibular interaction in the control of eye movements:
mathematical modelling and computer simulation, BioI. Cybernet. 47,203-211 (1982).

25. W. A. MacKay and J. T. Murphy, Cerebellar modulation of reflex gains, Prog. Neurobiol.
13,361-417 (1979).

26. J. Dichgans and Th. Brandt, Visual-vestibular interaction: effects on self-motion perception
and postural control, in Handbook of Sensory Physiology, Vol. VIII, Perception (R. Held,
H. Leibowitz, and H. L. Teuber, eds.), pp. 755-804, Springer-Verlag, Berlin (1978).

27. A. L. Yarbus, Eye Movements and Vision, Plenum Press, New York (1967).
28. D. Noton and L. Stark, Eye movements and visual perception, Sci. Am. 224 (6), 34-43

(1971).
29. H. Freeman, Shape description via the use of critical points, Pattern Recognition 10 (3),

159-166 (1978).
30. S. L. Tanimoto and A. Klinger (eds.), Structured Computer Vision: Machine Perception

Through Hierarchical Computation Structures, Academic Press, New York (1980).
31. A. Rosenfeld (ed.), Multiresolution Image Processing, Springer-Verlag, Berlin (1984).
32. C. R. Dyer, Multiscale image understanding, in Parallel Computer Vision (L. Uhr, ed.), pp.

171-213, Academic Press, Orlando, FL (1987).
33. H. Samet, Applications of Spatial Data Structures, Addison-Wesley, Reading, MA (1991).
34. H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading,

MA (1991).
35. H. Samet, The quad-tree and related hierarchical data structures, ACM Comput. Surv. 16,

187-260 (1984).
36. A. Rosenfeld, Some techniques for image segmentation, in Pyramidal Systems for Computer

Vision (V. Cantoni, and S. Levialdi, eds.), pp. 261-271, Springer-Verlag, Berlin (1986).
37. Ph. Clermont and A. Merigot, Efficient parallel pyramidal primitives or image analysis, in

Progress in Image Analysis and Processing. II (V. Cantoni, M. Ferretti, S. Levialdi,
R. Negrini, and R. Stefanelli, eds.), pp. 544-550, Wold Scientific, Singapore (1992).

38. V. Cantoni, L. Cinque, C. Guerra, S. Levialdi, and L. Lombardi, Describing object by a
multi-resolution syntactic approach, Proc. 2nd Int. Conf. on Parallel Image Analysis, Ube,
Japan, 1992.

39. P. J. Burt and E. H. Adelson, The Laplacian pyramid as a compact image code, IEEE Trans.
Commun. COM-31 (4), 532-540 (1983).

40. C. F. Neveu, C. Dyer, and R. T. Chin, Two-dimensional object recognition using multiresolu­
tion models, Comput. Vision, Graphics, Image Process. 34, 52-65 (1986).

41. D. H. Ballard, Generalizing the Hough transform to detect arbitrary scapes, Pattern Recogni­
tion 13 (2),111-122 (1981).

42. K. S. Fu, Recent developments in pattern recognition, IEEE Trans. Comput. C-29 (10),
845-854 (1980).

43. K. S. Fu, Hybrid approaches to pattern recognition, NATO ASI on Pattern Recognition:
Theory and Applications (1. Kittler, K. S. Fu, and L. S. Pau, eds.), pp. 139-155, D. Reidel,
Dordrecht (1982).

44. N. Nilsson, Problem Solving Methods in Artificial Intelligence, McGraw-Hill, New York
(1971).

45. R. S. Michalsky, Pattern recognition as rule-guided inductive inference, IEEE Trans. Pattern
Anal. Machine Intell. 2 (4), 349-361 (1980).

www.manaraa.com

Hierarchical Strategies in Computer Vision Systems 67

46. W. H. Tsai and K. S. Fu, Attributed Grammar-a tool for combining syntactic and statistical
approaches to pattern recognition, IEEE Trans. Syst., Man Cybernet. SMC-I0 (12),
873-884 (1980).

47. S. L. Tanimoto, J. P. Crettez, and J. C. Simon, Alternative hierarchies for cellular logic,
Proc. 7th Int. Conf. on Pattern Recognition, Montreal, Canada, 1984, pp. 236-239.

48. P. J. Burt, Tree and pyramid structures for coding hexagonally sampled binary images, Com­
puter Graphics, Vision, Image Process. 14, 271-280 (1980).

49. N. Ahuja, On approaches to polygonal decomposition for hierarchical image representation,
Computer Graphics, Vision, Images Process. 24, 200-214 (1983).

50. N. P. Hartman and S. L. Tanimoto, A hexagonal pyramid data structure or image processing,
IEEE Trans. Syst., Man, Cybernet. SMC-14, 247-255 (1984).

51. J. L. Crowley and A. C. Parker, A representation for shape based on peaks and ridges in the
difference of low-pass transform, IEEE Trans. Pattern Anal. Machine Intell. 6 (2), 156-170
(1984).

52. W. G. Kropatsch, A pyramid that grows by power of two, Pattern Recognition Lett. 3 (9),
315-322 (1985).

53. S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation,
IEEE Trans. Pattern Anal. Machine Intell. PAMI-ll (7), 674-693 (1989).

54. E. H. Adelson, E. Simoncelli, and R. Hingorani, Orthogonal pyramid transforms for image
coding, in Visual Communications and Image Processing. II, Vol. 845, pp. 50-58 (1987).
SPIE.

55. N. Millard and C. Paul, Recursive quadrature mirror filters: criteria specifications and design
methods, IEEE Trans. Acoust., Speech, Signal Process. ASSP-33 (4), 413-420 (1985).

56. W. M. Wells, Efficient synthesis of gaussian filters by cascaded uniform filters, IEEE Trans.
Pattern Anal. Machine Intell. PAMI-8 (2), 234-239 (1986).

57. J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda, Uniqueness of the Gaussian kernel
for scale space filtering, IEEE Trans. Pattern Anal. Machine Intell. PAMI-8 (I), 26-33
(1986).

58. A. L. Yuille and T. A. Poggio, Scaling theorems for zero crossings, IEEE Trans. Pattern
Anal. Machine Intell. PAMI-8 (2), 15-25 (1986).

59. D. Marr and E. C. Hildreth, Theory of edge detection, Proc. R. Soc. London 8-207,
187-217 (1980).

60. P. J. Burt, Smart sensing in a pyramid vision machine, Proc. IEEE 76 (8), 1006-1014 (1988).
61. P. J. Burt and E. H. Adelson, A multi-resolution spline with application to image mosaics,

ACM Trans. Graphics 2 (4),217-236 (1983).
62. A. R. Hanson and E. M. Riseman, Segmentation of natural scenes, in Computer Vision Sys­

tems (A. R. Hanson and E. M. Riseman, eds.), pp. 129-174, Academic Press, New York
(1978).

63. J. L. Crowley and R. M. Stern, Fast computation of the difference of low pass transform,
IEEE Trans. Pattern Anal. Machine Intell. 6 (2), 212-222 (1984).

64. E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, Pyramid methods
in image processing, RCA Eng. Mag. 29 (6), (1984).

65. A. Rosenfeld and M. Thurston, Edge and curve detection for visual scene analysis, IEEE
Trans. Comput. TC-20, 562-569 (1971).

66. A. P. Witkin, Scale-space filtering, Proc. 7th Int. Joint Conf. IJCAI, 1983, pp. 1019-1021.
67. A. Haar, Aur theorie der orthogonalen functionensysteme, Math. Ann. 69,331-371 (1910).
68. J. E. Shore, A two dimensional haar-like transform, NLR Report 7472 AD 755433 (1973).
69. L. Carrioli, A pyramidal Haar transform implementation, in Image Analysis and Process-

www.manaraa.com

68 Chapter 2

ing (V. Cantoni, S. Levialdi, and G. Musso, eds.), pp. 99-108, Plenum Press, New York
(1986).

70. M. Ferretti, Overlapping in compact pyramids, in Pyramidal Systems for Computer Vision
(V. Cantoni and S. Levialdi, eds.), pp. 238-251, Springer-Verlag, Berlin (1986).

71. M. D. Levine, Region analysis using a pyramid data structure, in Structural Computer Vision
(S. L. Tanimoto and A. Klinger, eds.), pp. 57-100, Academic Press, New York (1980).

72. G. Granlund and J. Arvidsson, The GOP image computer, in Fundamentals in Computer
Vision (0. Faugeras, ed.), pp. 443-458, Cambridge University Press, Cambridge (1983).

73. M. D. Kelly, Edge detection in pictures by computer using planning, in Machine Intelligence
6 (B. Meltzer and D. Michie, eds.), pp. 397-409, Edinburgh University Press, Edinburgh
(1971).

74. P. J. Burt and G. van der Wal, An architecture for multi-resolution, focal, image analysis,
Proc. 10th Int. Conf. on Pattern Recognition, Atlantic City, NJ, 1990, pp. 305-311.

75. C. H. Anderson, P. J. Burt, and G. van der Wal, Change detection and tracking using pyramid
transform techniques, Proc. SPIE Conf. Intelligent Robots and Computer Vision, 1985, pp.
72-78.

76. V. Cantoni and S. Levialdi, Contour labelling by pyramidal processing, in Intermediate-level
Image Processing (M. B. Duff, ed.), pp. 179-188, Academic Press, London (1986).

www.manaraa.com

Chapter 3

Hierarchical Homogeneous Topologies

This chapter introduces a first class of hierarchical systems: the simplest way
to assemble a hierarchy is to link identical modules, thus giving rise to homo­
geneous systems. Among the possible topologies that fit into this description
are the following families: snowflakes (simple and dense), stars (partial and
full), trees (regular, half- and full-ringed, hypertrees, multitrees, flip trees),
hypemets, and pyramids (bin, quad, generic). Each family will be analyzed in
detail. The analysis will be focused on topological aspects.

3.1. INTRODUCTION

There are different approaches when designing a system which has forms
of massive parallelism, according to the autonomy of the computing unit and
the capability of the interconnection network. Among the various taxonomies
proposed, a basic distinction! can be drawn between systems which consist of
full-functioning, autonomous processing elements (PEs), equipped with local
memory, which have been called multicomputer, and systems that interconnect
memory modules and computing modules, the multiprocessors.

The latter approach considers the interconnection network as a central re­
source of the system; further analysis has highlighted a possible partitioning of
this class according to the communication mechanism between processing mod-

69

www.manaraa.com

70 Chapter 3

ules and memory modules. One can distinguish between loosely coupled sys­
tems, in which links are logical and communications can be assimilated with
packet switching, and tightly coupled ones, where physical connections are
established by means of memory sharing.

In the former approach, the network results from the interconnection of
the PEs through dedicated links. Generally, such systems are analyzed under
the assumption that the computations to be carried out are best described ac­
cording to the multiple-instruction, multiple-data (MIMD) paradigm: i.e., au­
tonomous, but cooperating tasks are executed on different PEs, exchanging
data asynchronously via a message-passing technique. The different systems
which have been proposed arise from the various topologies that have been
used to exploit the limited number of links available with every processing
element. Since the ultimate goal of these studies is the construction of systems
containing a large number of units, the issues of modular design, regularity of
decomposition, and fault tolerance are of the utmost importance.

Various topologic arrangements of PEs have been proposed and sometimes
used in constructing hierarchical multicomputer systems. The different alterna­
tives are here compared in terms of a few parameters describing the perfor­
mance of the network (diameter, message traffic over the links, and so on) and
the overall complexity of the system (the number of links as a function of the
number of PEs). A few comments regarding addressing and routing algorithms,
fault tolerance, VLSI implementation, and domain of applications will be re­
ported as well.

3.2. HIERARCHICAL PARADIGM

Among the possible topologies for systems that share a homogeneous,
modular, and regularly decomposable design, a paradigm can be defined as
follows:

• A node consists of a single PE, equipped with local memory for pro­
gram and data storage and with a small number of interconnecting
channels.

• The degree d of a node is the number of connections with other nodes;
each connection is bidirectional and can take the form of a dedicated
link or of an access to a shared resource, such as a bus.

• A module is the elementary building block of the system, assembled
with a set of p interconnected nodes.

www.manaraa.com

Hierarchical Homogeneous Topologies 71

• A hierarchy H(n,p) results from a regular composition of modules ar­
ranged in such a way as to produce a structure with n levels.

• The total number of nodes in the structure will be denoted by N.

The overall structure resulting from the composition of modules can be
enlarged modularly according to one of the two following approaches. Let
H(n,p) be a hierarchy of level n; H(n+ 1,p) is the new structure obtained either
by adding to H(n,p) a proper number of modules to build the next level of
the hierarchy or by replicating H(n,p) and connecting these replicated subunits
together. In both cases, no changes are required to H(n,p) to enlarge the sys­
tem, which is therefore, in terms of construction, uniform and regular (recur­
sively decomposable).

The topologies that fit this description are the following families: snow­
flakes and stars,2. 3 trees,4-6 hypernets7 and pyramids. s, 9 Each family will be
analyzed in detail in subsequent sections. It can be seen, however, that they
can be thought of as belonging to two different larger groupings, according to
the microarchitecture of the composing module; in snowflakes and stars (and in
some cases in hypernets as well) the PEs are interconnected locally by a bus,
while other families use a set of distinct physical channels to link the PEs of a
module. The former group will be referred to subsequently as "bus-oriented
architectures," the latter as "link-oriented architectures." This distinction
could lead to different criteria evaluating the performance of the structure, as
far as data exchanges are concerned, since one should take into account the
contention for shared resources (the bus). For the purpose of this analysis,
however, data transmission between immediately neighboring PEs will be con­
sidered as an atomic action; handshaking protocols, timing philosophy, and
general control strategy will not be taken into account. The analysis will only
be focused on topological aspects.

Regarding this, fault tolerance strategies will be considered simply from
the point of view of alternative routes; the other elements of the fault tolerance
implementation (namely, masking, detection, containment, diagnosis, re­
pair-reconfiguration, and recoverylO) for improving system reliability are out­
side the scope of this discussion.

3.3. COMPARISON PARAMETERS AND EVALUATION CRITERIA

To produce a sound quantitative estimate of the efficiency of such architec­
tures, independent of their very specific application, it seems worthwhile to

www.manaraa.com

72 Chapter 3

introduce two types of measures. The former tries to quantify the complexity
of the systems as generated by the topology alone: this leads to the introduction
of the increasing law and diameter parameters. On the other hand, the latter
approaches the problem of cost estimation for data exchanges among nodes in
the system. This second class of parameters, which includes loads, average
internode distance, and message density, depends heavily on a number of
hypotheses on the computational model of tasks being executed on the system.
The definitions of these parameters are given below.

As mentioned, a very general paradigm is the MIMD modality; the tasks
are allocated to distinct nodes, possibly each node having a single task, and
therefore the cooperative effort of the different computations puts a very heavy
influence on the efficiency of data exchanges. To predict the behavior of the
system it is necessary to model the process of message generation. The most
generally used approach is based on the uniform reference model (URM).
Within this model,l the probability P{i,j} that node i sends a message to node
j is constant for the whole system and does not depend on the distance between
the two nodes. This assumption gives essentially an analytic simplification to
all mathematical derivations of closed-form formulas for the parameters, but is
rather crude, even for the MIMD situation. The introduction of a degree of
locality in the interaction of cooperating tasks2. 7 could take into consideration
the characteristics of fine-grained parallel processes; in these cases, the proba­
bility p{x} that two nodes at a dIstance x exchange messages has been modeled
according to the threshold criterion2 (each node has a local region of nodes that
are addressed with equal probability; all other nodes outside such a region are
uniformly addressed) or to the geometric distribution criterion II (nodes are
grouped into regions, each region at increasing distance and geometrically de­
creasing probability of being visited by messages; within a region, all nodes
are uniformly addressed). This latter kind of analysis has not been followed up
here; as to the former some comments will be given, but the bulk of the chapter
refers to the URM.

However, a further hypothesis has been made characterizing the behavior
of these systems, namely that the message generation rate complies with the
request independence assumption (RIA)12; in the context of multicomputer sys­
tems, this hypothesis states that each message generated at a node is indepen­
dent from the previous one generated at the same node.

A few comments (and references to specific solutions) for the existence of
detour paths will be given for the purpose of fault containment. Indeed the
trade-off between the efficiency of fault-recovery algorithms and the complex­
ity of the required hardware to implement them has to be individually evaluated
for each realization.

www.manaraa.com

Hierarchical Homogeneous Topologies 73

For these assumptions, here are the definitions of the parameters that char­
acterize the topology of the systems.

• Increasing law This parameter gives the overall number of links
within the system as a function of the total number of nodes.

• Diameter Let a path length between nodes (i,j) be the number of
nodes visited by a message traveling from node i to node j (including the desti­
nation node j itself) by atomic neighbor data movements. Let MinDist(i,j) be
the length of the shortest path connecting two nodes i and j. Then

Diameter = Max {MinDist(i,j)} Vi,j in the system

The following definitions are related to parameters that measure the perfor­
mance of the system in message exchanges under the hypotheses of URM and
RIA.

• Average internode distance. By weighting the number N(x) of nodes
at a distance x from a reference node with the distance itself and averaging on
the number N - 1 of the other nodes in the system, one obtains an average
distance which depends on the reference node and that varies within the system
if the structure is not regular. If this measure is computed for all possible
choices of the reference node and again averaged, the resulting average in­
ternode distance is independent of the reference node and more fitted to de­
scribe the behavior of the system in terms of average cost in time for informa­
tion exchange under URM.

• Maximum load. The load of a link is defined as the probability that a
message between a random pair of nodes transits over that link. The location
in the system, where it is at a maximum, is a possible bottleneck for data trans­
mission.

• Minimum load. Opposite the previous parameter, the minimum load
link shows the location in the system which is most underused.

• Message density. This is the average load in the whole system, ob­
tained under the hypotheses that each node sends a message to all other nodes,
resulting in a number of messages M where M = N(N - 1). The traffic in the
systems is represented by the product of M with the average internode distance

www.manaraa.com

74 Chapter 3

averaged over the total number of links L. The density at each link is normal­
ized with the number of messages, and the net result is that the message density
is obtained as the ratio of the average internode distance to the number of links,
a result to be expected under URM.

3.4. BUS-ORIENTED ARCHITECTURES

The common feature of bus-oriented architecture is the arrangement of
PEs in the module; a bus interconnects the p nodes which make up the module.
The family is composed of snowflake and dense snowflake structures and also
of the star one; hypernets based on the buslet can also be considered here, but
they are treated in a separate section under the more general family of hyper­
nets. Each structure in this family is uniquely identified by the couple (n,p), n
being the level of the hierarchy and p the cardinality of the module.

3.4.1. Snowflakes and Dense Snowflakes

An (n,p) snowflake2,3 is defined recursively as follows:

• A (1 ,p) flake is the module.
• An (n,p) flake is composed of p flakes of level n -1, each having a

node (called the active comer of level n - 1) selected to connect to the
bus of level n.

Within each (n - 1 ,p) flake, active comers must be in different positions;
moreover, each flake (associated with a label r (0 $. r $. p - 1)) has a so-called
latent comer, to be used in building the (n + l,p) flake, acting as the active
comer of the (n,p) flake as shown in Figure 3.1. An example of a snowflake
(3,4) is given in Figure 3.2.

A unique path from every source to every destination node can be defined,
and therefore a simple (n,p) snowflake is not fault tolerant. The routing algo­
rithm can be developed recursively as well: if the source and destination nodes
belong to the same flake, the data are transmitted directly through the bus;
conversely the data are transmitted from the source to the active comer and
from this to the next active comer of the next higher level recursively until a
level in which a subflake induding the destination node is reached; through the
active comers, once more recursively, data are transmitted downward through
the subflakes until the destination flake is reached. As an example, Figure 3.3
shows the routing of a message from node 301 to node 121.

www.manaraa.com

Hierarchical Homogeneous Topologies

Figure 3.1. (nA) snowflake with the four components of
level n - I . Note that the clockwise labeling sequence is used
recursively throughout the levels.

o
o

1

2

Latent Corner

Active Corner

7S

Figure 3.2. (3,4) snowflake: buses have an (n + I)-digit label beginning with x and containing as
many hyphens as the levels they belong to; the latent comers are 000, 111 , 222, 333.

www.manaraa.com

76 Chapter 3

x---

x3-- x1--
Buses

x30- x31- x13- x12-

301 302 313 311 133 131 120 121
SOuITe---------------------------------.~~ Destination Nodes

Figure 3.3. Example of the path between a pair of leaf nodes (301 - 121) in the (3,4) snowflake
of Figure 3.2.

It is easily verified that the root bus must be traversed by most messages
and therefore sustains the maximum load, while the minimum is that of the
buses of the lowest level; this happens in most hierarchical systems.

An (n.p) dense snowflake2• 3 is defined recursively as follows:

• A (l,p) flake is the module.
• An (n,p) dense flake is composed of p dense flakes of level n - 1, each

connected to p - 1 external buses of level n.

The active comers of each (n - 1 ,p) dense flake are therefore p - 1 and
access two buses; the single latent comer is connected only to the internal bus.
An example of a (3,4) dense snowflake is shown in Figure 3.4.

In this kind of snowflake there exist more paths from a source to an arbi­
trary destination node. A "good" routing algorithm is the following (in Ref. 3
an optimum routing algorithm based on a different addressing scheme is pre­
sented): if the source and destination nodes belong to the same flake the data
are transmitted directly; conversely, the message is transmitted from the source
to the active comer of the nearest higher-level bus and from this to a next
active comer of a higher level recursively until it reaches a level in which a
subflake includes the destination. Through the active comers, once more recur­
sively, the message is transmitted downward within the subflakes which include
the destination until it reaches the level of the destination flake.

As an example, the path between the same node pair 301 and 121 of
Figure 3 is shown in Figure 3.5: the message crosses only two intermediate
nodes.

The introduction of more active comers at each level reduces by a factor
of p - 1 the load on the root bus, which remains, however, the maximum
loaded one. Should this bus become unusable, alternative paths can be easily
identified. Then, for alternative detours, each flake has p - 2 additional mes­
sage paths, providing a significant performance improvement to fault tolerance.
Nevertheless, a node is disconnected when its two buses are faulty.

www.manaraa.com

Hierarchical Homogeneous Topologies 77

Figure 3.4. (3,4) Dense snowflake: bus labeling is the same of Figure 3.2; the three bus families
are distinguished by the first letter, which is respectively x, y, z.

301
Source

z--
-30 -12

300 122 121

-------I .. ~ Destination

Buses

Nodes

Figure 3.5. Example of the path between a pair of leaf nodes (30 I -> 121) in the (3,4) dense
snowflake of Figure 3.4.

3.4.2. Partial and Full Stars

A partial and full stars structure3 uses a module that consists of p - I nodes
connected to a bus; the hierarchy results from the connection of p - I modules
to the new higher-level one via the lower-level buses, and not through lower­
level nodes, chosen as active ones, as is the case in snowflakes family. All in
all each bus, except the root one, hosts p nodes.

www.manaraa.com

78 Chapter 3

xOl x02 xlO xl!

xOO x x12

x32 x20

x3 202

x31 x30 x22 x21

Figure 3.6. (3,4) full star: bus labeling follows the same addressing rule of the nodes; the number
of digits corresponds to the level of the bus.

An (n,p) star is defined recursively as follows:

• A (1 ,p) star has p - 1 nodes connected to a single bus.
• An (n,p) star uses a new module with p - 1 nodes, each connected to

the highest bus of a different (n - 1,p) substar.

This definition generates the partial star; indeed the top-level bus can host
a last node, which can be used to complete the structure, thus obtaining the
full star. In this case the whole hierarchical structure can be seen as an alternate
sequence of buses and processors; every bus connects one node of a higher
level module with p - 1 nodes of a lower level one. The center of the cluster
is the top-level bus, while the periphery is made up of the leaf nodes.

The addressing rule is such that every node is assigned a variable-length
address where the least significant digit (ranging from 1 to p - 1) is related to
the top-level nodes and the other digits are added to the left in order to address
lower-level nodes. Figure 3.6 shows a (3,4) full star.

As in the snowflake family, a unique path can be found for every pair of

www.manaraa.com

Hierarchical Homogeneous Topologies 79

source-destination nodes. The routing algorithm is also simple: starting from
the source node the message is transmitted from lower-level bus to higher-level
bus recursively until a common "parent" between the substar of the source
and that of the destination node is reached. Then the message is transmitted
downward within the substars until it arrives at the destination.

As an example the path between the pairs of nodes 202, 120 represented
in Figure 3.6 will be 202- x20-20- x2- 2-x-l-xl-12- xI2-120.

The topology of the full star is closely related to that of the snowflake;
indeed, routing algorithms and maximally and minimally loaded buses coin­
cide. Obviously, since there is a unique path from every source to every desti­
nation, no detour technique for fault purposes can be conceived.

3.5. LINK-ORIENTED ARCHITECTURES

The modular construction approach which augments the levels of the hier­
archy by replicating subunits, as previously seen for the bus-oriented architec­
tures, is replaced in the link-oriented ones by an incremental strategy no longer
based on the module but relying directly on the nodes. Regular trees are the
basic structure of the family. However, additional links are required to provide
alternative paths which improve the performances of the network and are the
basis for achieving some fault tolerance in message routing. Cases considered
are ringed trees and hypertrees, multitrees, jliptrees, and bin, quad, and gener­
alized pyramids. This broad group extends the hierarchical family based on
trees to the topology of graphs. To this family also belong hypernets, even if
some instances of these architectures embody buses.

3.5.1. Regular Trees

A regular m-ary tree of n hierarchical levels is defined recursively as
follows:

• A (l,m) tree consists of a single node, called the root of the tree.
• An (n,m) tree is composed of a root and of m disjoint sets of nodes,

each forming an (n -] ,m) tree of level n - 1.

The degree d of the nodes varies within the structure; d = m + 1 except for
the root which has d = m and for the leaves where d = 1.

A symmetric visit of the tree generates the following numbering scheme
for the nodes: the root is labeled 1; the m children of a node labeled x receive

www.manaraa.com

80 Chapter 3

labels mx + i, 0 < i < m - 1. These labels, in base m, give each node a variable­
length address; the number of digits in the address is equal to the position of
the node in the hierarchy. Figure 3.7 shows a (5,2) tree.

With this definition, the routing algorithm is quite simple: the source and
destination node belong to a common subtree (possibly the whole tree) identi­
fied by a number of common most significant digits in their addresses. A mes­
sage has to move upward to the root of the common subtree and to descend
using the other digits of the destination address in order to move among the
other subtrees until the destination node is reached.

Trees have unique paths between any two nodes and this leads to conges­
tion problems at the higher levels of the hierarchy and to critical fault tolerance
problems. Each link of the root node supports a load of roughly 2(m - 1)lm2;

the minimum load is found at the leaf nodes and is approximately 21N.
Various mechanisms for implementing fault-tolerant reconfigurable trees

have been proposed in recent years. The first proposals in the early 1980s
aimed at the construction of tolerant trees for one and two faults. 13, 14 In Ref.
15 these proposals have been improved by adding sufficient redundant links in
order to tolerate mUltiple failures. A new approach, in which spare nodes are
allocated at the leaves, has been followed in SOFT (subtree-oriented fault toler-

10100 1010 10101

Figure 3.7. (5,2) regular binary tree. In this planar embedding each child of a node receives the
label of the father augmented with 0 for the left child and I for the right child.

www.manaraa.com

Hierarchical Homogeneous Topologies 81

ance)16; it achieves a considerable flexibility in reconfiguration, with signifi­
cantly less redundancy, through sharing of spares between adjacent subtrees.

3.5.2 Augmented Trees

Additional links to the skeleton tree can be used in order to reduce the
average path length and to provide a more uniform message density. The place­
ment of the additional links so far proposed leads to half- and full-ringed trees
and, when the average distance between nodes is minimized, to the hypertree.
Obviously, the addressing scheme for these augmented structures is the same
as the one for regular trees.

3.5.2.1. Full- and Half-Ringed Trees

The class of structures4 containing full- and half-ringed trees augments the
connectivity of regular trees by adding at most two links to every node apart
from the root. The full-ringed tree has exactly two such extra links per node
that generate at each level a ring; the half-ringed tree only interconnects, with
a single extra link, neighboring nodes that are not siblings. Figures 3.8 and 3.9
show respectively a (5,2) full-ringed tree and a (5,2) half-ringed tree.

To define a routing scheme for the full-ringed tree, let D(i,j) be the dis­
tance along the ring of two nodes i and j which belong to the same level. If
the source and destination nodes are at the same level in the hierarchy, the
routing algorithm chooses the horizontal connections along the ring if

(3.1)

(simulations show that replacing :5 by < leads to a less uniform load distribu­
tion). Vertical hops are handled in the same way as for regular trees.

A routing algorithm for the half-ringed binary tree case can be found in
Ref. 17.

The congestion of the root links typical of regular trees is avoided in these
structures. For example, communications among leaves in the tree never in­
volve the root; the bottleneck is found at the links of the fourth hierarchical
level ("horizontal" links for the full-ringed and vertical links for the half­
ringed case, respectively).

www.manaraa.com

82 Chapter 3

Figure 3.8. (5,2) full-ringed binary tree. Two extra links are added to each node, and a complete
ring is realized at each hierarchical level.

Figure 3.9. (5,2) half-ringed bmary tree: with respect to the full-ringed binary tree the extra links
between siblings are missing.

www.manaraa.com

Hierarchical Homogeneous Topologies 83

3.5.2.2. Hypertrees

Internode distances can be lowered by modifying the structure of a regular
tree. A better utilization of extra links within a level should favor n-cube
links-that is, links between nodes which have a Hamming distance of 1.

Such is the case in hypertrees.4 According to the number of extra links
introduced, one obtains a hypertree I or a hypertree II, and so on. Since at each
level x of the hierarchy there is an n-cube structure of degree x-I, one has to
choose which links to introduce (let us consider only hypertree I). Such extra
links are chosen so that the maximum distance among the isolevel nodes be­
comes minima1.4 A (5,2) hypertree I is shown in Figure 3.10.

As for the routing algorithm, it follows from the definition that a message
uses a horizontal connection if it decreases the Hamming distance between the
current position in the tree and the destination node. No path between leaf
nodes goes higher than the middle level of the tree.4 For this reason, the aver­
age distance of hypertrees is much better than those of all the other aug­
mented trees.

The simple routing algorithms described can easily be updated to support
the presence of no more than one faulty link or node, provided that the faulty

Figure 3.10. (5,2) hypertree I. As in the half-ringed binary tree one extra link for each node is
added, in this case minimizing the maximum distance among the nodes in each layer.

www.manaraa.com

84 Chapter 3

node is not itself the source or target. In fact, each node has a minimum of one
alternative path, and the detour can be limited to a few recovery steps toward
the original path.4

While the "long-distance" n-cube interconnections are useful for the
stated network performances, the lack of redundant paths to nearby nodes, such
as those of ringed trees, may be more disadvantageous if the message traffic is
mainly local and for generating the quoted short local recovery detour.

3.5.3. Complete Trees

The tree networks so far introduced are characterized by a different degree
of node: usually the root and the leaves have unexploited connections available.
Some proposals have been made to fully exploit the connection capabilities of
the nodes in order to improve mainly the resilience to faults and the network
performances. We consider the multitrees and the ftiptrees. While the other tree
families can be enlarged with a new level simply by adding new nodes and
connections, for complete trees the updating is more complex: it is necessary
to first remove the extra connections between the leaves and then proceed to
the construction of the new level.

3.5.3.1. Multitrees

A multitree5 is a graph characterized by three parameters (n,d,t) with the
following properties:

• A set of t identical component (n,d) trees defined as follows:
The root of a component has d - 2 children.
All other nodes, except the leaves, have d-l children.

• The roots of the component trees form a ring.
• Each leaf of the multitree has d - 1 links with other leaves; all level-n

nodes are linked in at least one cycle.

It follows from these definitions that the degree of all the nodes is constant
in the structure and is equal to d. So, an (n,d,t) multitree has N=t(d-l)n-l
nodes and d NI2 links. Figure 3.11 shows a (4,3,4) multitree.

A node in a multi tree is labeled by a pair of numbers (x, y); x (0 ::; x ::; t - 1)
indicates the component tree, and y is the address of the node in such a tree
using a straightforward modification of the rules defined previously for regular
trees.

No routing algorithms has yet been given for this structure, which is so

www.manaraa.com

Hierarchical Homogeneous Topologies 85

Figure 3.11. (4,4,3) multitree. Fully exploiting the d-connectivity of each node, extra rings are
introduced for apexes and leaves respectively.

rich in alternative paths that it is tolerant of d - 1 faults; empiric results can be
found in Refs. 5 and 18.

3.5.3.2. Flip trees

An (n,d) flip tree6 is defined as follows:

• A set of d regular (n-I,d-I) trees.
• The root of each (n-l,d-I) subtree has a link connected to the root

node of the flip tree.
• Each leaf node has d - I additional links with other leaf nodes, each

one belonging to a different subtree.

The degree of a node is constant and is rigorously d, as in multitrees. A
(4,3) flip tree is shown in Figure 3.12.

The addressing scheme assigns to the nodes an increasing number of dig­
its; starting from the d children of the root, which receive labels 0,1, ... ,
d - 1. Lower-level nodes add a digit in the range O,d - 2 to the address of the
parent. The additional links at the leaves are identified as follows: by flipping
the n - 2 least significant digits of a leaf note address, one selects a set of d - 1
leaf nodes each located in one of the remaining d - 1 subtrees.

www.manaraa.com

86 Chapter 3

Figure 3.12. (4,3) flip tree. The d-connectivity of each node is used to achieve the highest fault
tolerance resilience.

An explicit routing algorithm is given in Ref. 6. The additional links, with
reference to the regular tree, are introduced mainly to support fault tolerance
strategies. Indeed, the congestion remains higher than in the hypertree struc­
ture , but the flip tree is strongly resilient to faults: in the presence of a maxi­
mum of d - 1 faults, the diameter increases to a maximum of 2n - 1 (a value
larger by 2 than in the case of absence of faults). Furthermore, there exists a
container (defined as a set of node-disjoint paths between a given pair of nodes)
consisting of d paths (obviously of maximum length 2n - 1) between every pair
of nodes.

3.5.4. Pyramids

A pyramid is the extension of a regular tree with a set of gridlike connec­
tions among the nodes of each level. Such an extension ties this structure to a
bidimensional support and has been motivated mainly · by applications such as
image processing and computer vision. 19. 20

Formally, four parameters are necessary to completely describe a pyramid:

www.manaraa.com

Hierarchical Homogeneous Topologies 87

1. The number of levels of the hierarchy (n).
2. The tessellation topology (t), which defines the connectivity among

the nodes of the same hierarchical level. These nodes are distributed
in a regular two-dimensional grid: each node can be connected only
to the four immediate neighbors in the cardinal directions (4-connec­
tivity); to the eight near neighbors, adding the four diagonal directions
(8-connectivity); to six neighbors in a hexagonal tessellation (6-con­
nectivity).

3. The width of the support (w) used to build each new level defines the
interconnections between nodes which belong to adjacent hierarchical
levels: each node has w children in the successive level of the hier­
archy.

4. The degree of reduction between successive levels (r). If r = w the
pyramid has no overlapping: the sets of children of the nodes of each
level are disjointed, no node belongs to two parents; in this case, the
degree of intermediate nodes is d = 1 + t + r. For the overlapped
case, w>r, and the maximum degree is d=w+i wlrl +t.

The analysis carried out here is limited to the nonoverlapped, square tes-
sellated case (r=w; t=4).

An (n, w) pyramid of n hierarchical levels is defined recursively as follows:

• A (1,w) pyramid consists of a single node, called the apex.
• An (n, w) pyramid consists of w (n - 1, w) pyramids interconnected by

extra links among external isolevel nodes and by w vertical links from
the (n-l,w) apexes to the (n,w) apex.

As an example, Figure 3.13 shows the (n,4) pyramid and its construction
based on the (n-l,4) subpyramids. The number of extra links in this case
is 4(2n - 1 -l).

Within nonoverlapped pyramids, two cases shall be considered: the bin
pyramid8 (w = 2) and the quad pyramid9 (w = 4). The former is a slightly aniso­
tropic structure, since each parent has two children and, for alternate planes of
the pyramid, vertical connections take place once along the rows and once
along the columns respectively. This organization results in the casting of a
binary tree into the vertical interplane connectivity. Conversely, the quad pyra­
mid is an isotropic structure. Figures 3.14a,b show respectively a five-level bin
pyramid and a three-level quad pyramid.

Several addressing algorithms can be adopted in a pyramid. Here the fol­
lowing solutions for bin and quad pyramids are suggested: the apex is labeled
(1,1); the children of a node (i,j) are labeled (2i,2j), (2i+ 1,2]), (2i,2j+ 1),
(2i + 1 ,2j + 1) respectively in the quad pyramid and, in the bin pyramid, (2i,j),

www.manaraa.com

88 Chapter 3

(n-l, 4) P (n-l, 4) P

/

x

~ " (n- l, 4) P (n-l, 4) P

(n. 4) Pyramid

Figure 3.13. An (n ,4) pyramid with
the four components of level n - I.
Light lines show the links among iso­
level nodes connecting the (n - 1,4)
subpyramids; heavy lines are hierar­
chical links from the (n -1,4) apexes
to the (n,4) apex.

(2i+ IJ) for even layers and (i,2}), (i,2j+ 1) for odd layers. The parent label
is (li12j,Lil2j) in the quad case and (i,Lil2j) for even layers and (Li/2jJ) for
odd ones in the bin case. With the adopted addressing algorithm, the layer of
a given node (i,i) is given by Llog2 i + IJ in the quad pyramid and
Llog2 ij + LIOg2 ij + 1 in the bin one.

The routing algorithm can easily be defined. Let S = (i,i) and D = (r,s) by
the source and destination nodes, respectively, and let us suppose that the
nodes belong to the same layer (otherwise, an extra path must be included in
which data are sent from the node of the lower layer recursively upward until
the layer of the higher node is reached). "Horizontal" ("vertical") communi­
cations are selected if the following relationships hold (do not hold):

(quad)

(bin ,even)

(bin,odd)

abs[j - r] + abs[j - s]:5 absLi/2 - r/2j +

abs~/2-s/2j+2

abs[i - r] + abs[j - s]:5 absLi/2 - r/2j + abs[j - s] + 2

abs[i - r] + abs[j - s]:5 abs[i - r] +
abs~/2 _s/2j + 2

(3.2)

(3.3)
(3.4)

This routing algorithm minimizes path length. Still, communications be­
tween remote nodes tend to produce congestion in upper layers, even if the
apex itself is involved only if it corresponds to S or D.

www.manaraa.com

Hierarchical Homogeneous Topologies 89

Apex

Figure 3.14. Binary and quad pyramids: (5,2) and (3,4) respectively with square tessellation on
the layers.

In both the bin or quad cases the connections with nearby nodes are so
rich that local, very short detours can be always realized when faults occur.

3.5.5. Hypernets

A hypernet hierarchical structure7 combines the complementary character­
istics of trees and hypercubes in the same system (modularity and low number
of links in trees, strong connectivity, regularity, and symmetry in hypercubes),
meanwhile avoiding their respective shortcomings (message congestion close
to the root and weak fault tolerance in the first ones and unmodularity in the
other ones).

A general hypernet is characterized by a quadruple (B,n,d,G) with the
following definitions:

• B is the set of modules used for constructing the net.
• n is the number of levels of the hierarchy.
• d determines the number of external links (equal to 2d) in each module.
• G is the global connectivity of the net or the number of interconnec­

tions between any pair of subnets.

A particular choice for B and G defines a certain family of hypernets, and
n and d specify an instance inside this family. Usually the basic modules in the

www.manaraa.com

90 Chapter 3

whole structure are identical; in Figure 3.15 some examples of these modules
are shown: cubelet, buslet, and treelet.7

Under these assumptions an (n,d) hypernet (n ~ 1) is defined recursively
as follows:

• A (1,d) hypernet consists of a single module with 2d external links.
• An (n,d) hypernet is composed of 22n - 2(d-2)+I/G subnets, which are

(n - I,d) hypernets, each one interconnected to all others by G different
external links selected among the unallocated ones; moreover in each
sublet, G unused external links are dedicated to 110 channels.

As an example, in the construction of the (2,d) hypernet, it can be verified
that exactly one half of the links of every module are used; to be precise, G
links are devoted to 110, 2d - 1 - G to the connections with the other modules
(the subnets), while the remaining 2d - 1 ones are still available for further con­
nections. Figure 3.16 shows a (3,2) hypernet based on a treelet.

The addressing scheme divides the m = log2 N bits (N being the total num­
ber of nodes in the net) that identify a node into n different fields: the field
farthest left provides the address of the (n - I,d) subnet containing the node,
and so on, recursively to the field farthest right of d bits, which is the address
of the node inside the basic module.

The connection rule adopted in constructing the structure is such that two
different nodes are connected at level h via their external links if and only if
the least significant h - 1 digits in both addresses are identical to the binary

BUS

a b c

o =PE __ = Extemallink

Figure 3.1S. The Jhree main modules of hypemets: (a) cubelet, (b) buslet, (c) treelet.

www.manaraa.com

Hierarchical Homogeneous Topologies

Figure 3.16. (3,2) hypemet based on
treelet. Each node has five-digit address:
the most significant two bits select the
treelet modules; the remaining three se­
lect the nodes inside the modules. Note
that the 110 nodes are identified by the
black circles.

I/O 00xxx

91

o I xxx 1/0

sequence 011 ... 1 and each of the two addresses can be obtained from the
other one by swapping the most significant q bits with the next significant
group of q bits, where q = 2n - 2(d - 2) + 1. Nodes having self-matching ad­
dresses in applying this second rule act as I/O nodes, and their external links
provide 110 channels.

The message-routing scheme exploits the hierarchical nature of the struc­
ture; so if source and destination nodes are within the same basic module,
routing is determined by its topology. Conversely, the path first proceeds up to
reach the lowest subnet, including both nodes. It then runs down through lower
subnets till the destination basic module is obtained.

The diameter and the average internode distance of an (n,d) hypernet de­
pend on the nature of the building blocks: for an n-Ievel hypernet these parame­
ters are bounded by 2n - \d{ I} + 1) - 1, where d{ I} indicates the diameter of the
basic module. Obviously, the maximum load is supported by the top-level links
among the subnets of level n - 1.

The minimum path is unique, although many other longer routes can be
found. Without using external links for rerouting, the fault tolerance for the
internal link failures of a module is possible only in the cubelet case (any faulty
link can be sidestepped by two extra hops?l: in the other referenced cases there
is only one path. But the (n,d) hypernet is based on a complete graph of
(n - I,d) subnets: the external links provide a container (G) so rich that the

www.manaraa.com

92 Chapter 3

destInation node can be reached, for a single fault (both internal or external) in
a few extra steps. For more details see Ref. 7.

3.6. PERFORMANCE MEASURES

The hierarchical architectures briefly described in Sections 3.4 and 3.5 can
be compared22 by using some of the performance indicators introduced In Sec­
tion 3.3. The results of the comparison are shown in Figures 3.17-3.20; they
contain a plot of the chosen parameters as a functIOn of the system size-that
is, the number N of nodes. Since single instances withIn each famIly behave
differently, each family is characterized by a "band" showing the lowest and
highest performances.

The "increaSIng law" has been selected among the parameters that depend
only on the topology of the system and has been obtained by mathematical
denvations III closed-form formulas. Figure 3.3 shows a plot of this indicator

Number of Processors IN)

Figure 3.17. The IncreasIng law number of hnks a~ a funcllon of the number of nodes Bus
architectures band withIn dotted hnes () Trees band withIn stroked hnes (-) Pyramids
dashed hnes (- -) H ypernets dot-dashed hne (-)

www.manaraa.com

Hierarchical Homogeneous Topologies 93

o Maximum Load
10 ~ .. ~ .. ~ .. ~ .. ~ .. ~ .. ~ .. ~ .. ~. ~ .. ~ .. ~ .. ~ . . ~ . . '-.. T. .. ~ .. T. . . T. .. ~ .. ~. ~ .. -.-.. ~ .. -.. -. . ~ .. -.. ~ . . ~ . . ~ . . -.. ~.~ . . ~ .. ~ .. ~ . . -. . -.. -.. -.. -.. T .. - . . -. ~ .. -.. -.. ~ .. -.. ~ .. ~ .. ~ .. ~ .. ~.~ .

... -'­'-;- --_.:::,.-.:..-:------------------------------
. 1;~""',...",.,., 1""II""I'"'"'..,..,,.,...~t"T'trT'l~ r"'I""Ir"'I""Il"'P"I,.,...~__. l""II""Ir"'I""Il""I""Il""I""II,...,,r'I""ll""l""ll""l""ll""ll""lr"'l""ll""l""ll""l""l,...,.l""II""Ir"'I""I

10 ~ . ~ . ~ ",_
.

·2
10

......
.

.....
..... -• -.....

.....
•

•

Number of Processors IN)

.....
.....

Figure 3.1S. Maximum load as a function of the number of nodes. Bus architectures: band within
dotted lines (" '). Trees: band within stroked lines (-). Pyramids: band within dashed lines (--).
Hypertrees: line of asterisks (*). Hypernets: band within dot-dashed lines (_.).

against the number of nodes in the system. The figure highlights the bands into
which the families divide; the bus architectures rank best, but the figure does
not take into account resource sharing among the module nodes. The band is
identified by a lower limit (sparse snowflakes with p = 8) and a higher one
(dense snowflakes with p = 4). The next band is associated with the family of
trees (d = 3); the lower limit is represented by the regular tree, while the higher
one is the full-ringed tree. Hypemet systems show a very narrow band that
collapses into a single line, located midway in the tree family; the highest line
represents the family of pyramids. Almost by definition, the increasing law for
these hierarchical systems is a linear function of the number of nodes; the
proportionality factor is associated with d for link architectures and with lip
for bus-oriented ones.

Of the three definitions of loads, the' 'maximum load" parameter has been
used to compare the systems under the specified hypotheses of traffic models
(for the tree and pyramid families the estimate is based on computer simulation;

www.manaraa.com

94

Bus: Average DIStances

20

15

10

5

I
I

/

I
I

/

I
/

I

Number of Processors (N)

I

I
I

/

Chapter 3

/

I
/

/

Figure 3.19. Average internode distance in bus-oriented architectures as a function of the number
of nodes. Stars: band within dashed lines (--). Snowflakes: band within dot-dashed lines (-').
Dense snowflakes: band within stroked lines (_).

in the other cases a closed-form formula has been derived). Generally speaking,
for a given N, the higher is p (or d), the lower is the number of levels nand,
for link-oriented structures, the maximum load. As shown in Figure 3.18 the
families of bus-oriented systems, pyramids, and trees all share a common be­
havior pattern: the maximum load is almost independent of the number of
nodes. Indeed, these systems are constructed by increasing a level-(n-l) hier­
archy by adding another layer at the bottom, thus preserving the upper levels
of the subsystem. Therefore, the maximum load, which is always sustained by
these levels, remains fixed as the system grows. The only exception to this rule
among trees is hypertrees: messages between leaves never reach higher than
half the height of the tree, and, by augmenting the number of levels, each node
in a layer can use links connecting it to others over longer distances. The load
thus decreases as the number of nodes increases. In a similar way, in hypernets
the number of links available to distribute the traffic increases as the structure
grows: in fact all subnets are linked in the process of constructing the larger

www.manaraa.com

Hierarchical Homogeneous Topologies 95

Unk: Average DIstance

Number of Processors IN)

Figure 3.20. Average internode distance in link -oriented architectures as a function of the num­
ber of nodes. Trees: band within stroked lines (-). Hypernets: band within dot-dashed lines
(_.). Pyramids: band within dashed lines (--).

system, and an increased number of subnets is used at each new level of the hi­
erarchy.

The "average internode distance" is a second parameter selected to com­
pare the systems with regard to message distribution and traffic congestion; the
"message density" parameter is strictly tied to the average internode distance,
as previously explained, so the analysis sheds light on both types of behavior.
It is well knowns that graphs of degree d having N nodes show a lower bound
k on the diameter (known as the Moore bound) and, as a consequence, on the
average internode distance too: such a bound is roughly 10g(N)/log(d-I).
Graphs reaching such a bound are called Moore graphs: an example is the (3,3)
flip tree. As a rule of thumb, Moore graphs have an average internode distance
equal to the number of levels in the embedded hierarchy, general graphs show
a value roughly twice as large, a few instances of complete trees have an inter­
mediate behavior; the worst case is in snowflakes, where the average internode
distance is exponential in the number of levels.

www.manaraa.com

96 Chapter 3

Figure 3.19 contains the plots of the average internode distance as a func­
tion of the number N of nodes for the bus-oriented family (obtained in closed­
form formulas), whereas Figure 3.20 contains those of the link-oriented sys­
tems (obtained in closed-form formulas but for the pyramids that have been
simulated). Of the three bus systems, the star exhibits the best performance,
with a logarithmic dependence on N. The snowflakes, instead, have larger in­
ternode distances because the connection between a generic pair of nodes most
probably uses lower-level nodes, while in the full-star case the same connection
would exploit buses located at higher hierarchical levels. The performances of
the link-oriented families are very similar; their bands substantially overlap.
The overall behavior shows a logarithmic increase in the number of nodes; the
differences within a family strongly depend on the degree of the node.

The two parameters which estimate the cost of data exchanges, namely
the maximum load and the average internode distance, have been evaluated in
the tree and pyramid cases for data exchanges among leaf nodes.

The foregoing analysis has been carried out under the URM assumption.
However, since many of the systems here discussed have been proposed also
for application domains where the message traffic among nodes is rather local
(such as vision), it is worthwhile making a few observations on the "threshold
model.,,2 Let us consider, for example, the average internode distance and
define a "localized average distance,,7 dtm under the threshold model as
follows:

(3.5)

where dURM is the average distance in the URM, dJ is the average distance
among the nodes located within the region defined by the threshold (it is a
purely topological parameter), and a is the percentage of local traffic. The
asymptotic behavior resulting from this formula when the traffic tends to be
predominantly local (a ~ 1) is independent of the architecture of the system;
little influence is played by the hierarchical structure because message routing
within the region only partially exploits the hierarchy. On the other hand, the
larger the region, the closer the behavior to the URM performance. A similar
observation can also be made for the load; the maximum load moves from the
higher links within the hierarchy to the lower ones. Generally, the perfor­
mances of hierarchical structures under the threshold model are similar to those
of the URM, provided that the dimensions of the system are large enough: in
fact, adJ is a constant while (1 - a)duRM depends on N.

www.manaraa.com

Hierarchical Homogeneous Topologies 97

3.7. APPLICABILITY

To appraise the usefulness of the hierarchical architectures so far exam­
ined, it is worth addressing at least two questions which are extremely im­
portant from the application point of view: the feasibility of the structures in
terms of very large scale integration (VLSI) and the set of algorithms that can
easily be mapped onto each family. Moreover, a brief review of the systems
that have been built (or merely proposed) according to the outlined paradigms
helps us understand the actual interest in the various architectures. The discus­
sion does not cover pyramids, which are considered in detail in other chapters.

3.7.1. VLSI Feasibility

All the architectures reviewed here have been introduced as a means of
building large systems, with the minimum number of processors being well into
the hundreds. However, we can easily speculate that the bus-oriented family is
liable to give rise to systems with fewer PEs than the link-oriented ones.

The bus-oriented architecture calls for a certain complexity in the structure
of each node, which has to handle the interfacing on the common resource. As
a result, the granularity of the PEs tends to be quite coarse. The few prototypes
and systems built according to this paradigm consist of clusters of relatively
powerful processors, based on commercially available, single-chip micropro­
cessors. VLSI integration does not influence so much the interconnection struc­
ture of the system; rather, it establishes the processing capabilities of the node
in terms of on-chip cache, memory management, floating-point unit, bus in­
terfacing, and so on.

The perspective changes when one considers the link-oriented architec­
tures. Here, the ultimate goal is true massive parallelism (thousands of PEs).
The thrust here is therefore toward simpler PEs to allow for the integration of
more nodes than ever into a single chip. The VLSI problem is here the layout
feasibility of the various topologies and chip pinout.

There exists a well-developed theory of the computational complexity of
the layout problem in VLSI;23 it rests upon theoretical models, such as Thomp­
son's,24 whereby a chip is divided into a grid of vertical and horizontal tracks,
separated by unit intervals and each processor is assumed to occupy a unit area,
with wires routed through the tracks, but not over any processors unless con­
nected to them. The two main problems that have been addressed are the area
complexity, as a function of the number of processors, and the minimization
of the longest edge length.

www.manaraa.com

98 Chapter 3

Among the hierarchical topologies here discussed, the one which has been
studied to a certain extent is regular trees.

It is well known that the binary tree can be laid out in an area O(N).24

The first layout was the H-tree; however, it has been proved to have poor area
utilization (50% in the limiting case), and it uses some nodes as crossing ele­
ments, a definite drawback when advanced integration techniques, such as Wa­
fer Scale Integration (WSI), are used. More recently, other schemes have been
introduced25 that exploit the reconfiguration capabilities of the plain mesh of
processors and achieve higher area utilization (90%), still using some nodes as
switching elements (in the "tiles" approach), or even higher area efficiency
(100%), abandoning the embedding approach and using recursive construction
algorithms based on four basic elementary blocks which layout a four-level
binary tree.26

Other tree topologies, having branching factor m = k2 , have been studied
in Ref. 27; they exhibit the same O(N) area complexity of the binary tree.
Moreover, these arrangements of k2-way trees can also be profitably used for
the quad-pyramid (k = 2) structure, since the additional interconnections neces­
sary for interlevel meshes can be routed on a different layer. As to the re­
maining structures in the tree family, it has been already observed that ringed
trees, hypertrees, multitrees, and flip trees are actually instances of graphs;
for this topology there exist theoretical results23 on upper bounds for the area
complexity, but little work has been done to produce actual layouts.

3.7.2. Applications

The bus-based families, for which there exist prototype and commercial
systems (see Section 3.7.3), are characterized by a certain granularity in the
architecture of the PEs. They have been and still remain a very good test-bed
to develop operative systems to support MIMD processing. From the applica­
tion point of view, they are amenable to very general computational paradigms
and have been used successfully in vision (intermediate- and high-level tasks,
such as handwritten script recognition and shape analysis).

The number of algorithms designed for trees, especially binary trees, is
enormous. The spectrum ranges from parallel prefix computations, such as as­
sociative binary operations (+, x, min, max, etc.), to grammar parsers,28 to
data base and dictionary operations.29 Quad-tree algorithms30 also map very
well on regular k2-trees machines. Whenever the tree offers additional links,
such as in the hypertree, other kinds of computations become feasible, because
of the symmetry of the n-cube interconnections, fast Fourier transform (FFT)

www.manaraa.com

Hierarchical Homogeneous Topologies 99

and sorting, which can be formulated to rely on in-place binary operations
easily carried out on neighboring PEs.4

The rich topology of hypemets can be used in many application domains.7

Among the data-parallel algorithms, in which a subnet is assigned a certain
subproblem of reduced size and all subnets cooperate to produce the solution,
are recursive doubling techniques for binary commutative and associative oper­
ations, where an (n,d) structure is used primarily to emulate an n-Ievel binary
tree; ascend-descend techniques for bitonic merging, sorting, convolution, ma­
trix multiplication, and FFf, for which the hypercube-type connections are bet­
ter utilized in the hypemet structure than in the hypercube itself. In the domain
of artificial intelligence, hypemets have been proposed to implement memory­
based reasoning according to the similarity induction paradigm, as opposed to
production rules-based reasoning and also to embed semantic networks, which
require a data-dependent mapping.

3.7.3. Prototypes and Machines

The family of bus-structured systems here described is not represented
exactly in any prototype or proposed system. However, the arrangement of a
number of PEs in clusters around a common bus and the hierarchical intercon­
nections of such clusters has been followed in at least two systems, the Cm*31
and the elaboratore multi mini associativo (EMMA) family,32 the latter also a
successful commercial product.

In the broad family of link-oriented architectures, the structures upon
which actual systems have been based are the regular tree and the bin and quad
pyramids. The former has been used more as a component of a larger and
possibly heterogeneous system, as in Non-Von33, 34 and NETRA,35 than as a
standing, homogeneous machine, as in DADO.36

In the Non-Von system, a complete binary tree of simple processing ele­
ments (SPE) is connected to a set of intelligent disk processors at a particular,
fixed level of the tree; moreover, each PE has an additional 110 port through
which the tree can be reconfigured into other topologies. The system is de­
signed to support three types of interprocessor communications: global bus
communication, whereby the controller broadcasts data to all SPEs or fetches
one datum from a single SPE; tree communication, which takes place among
physically adjacent processors; and linear communication, in which the whole
tree is reconfigured as a linear array of SPEs. The latest version of the proto­
type system, Non-Von 3, was planned to have a single, 8-bit processor per
chip.

In NETRA, the hierarchical interconnection network is used to create an

www.manaraa.com

100 Chapter 3

n-tree of distributing and scheduling processors (DSP) which controls the set
of PEs organized into clusters of 16 to 64 processors each. These processors
are linked to a global memory by an interconnection network. Most notably,
the tree structure is used as the control substructure of the whole system, not
as the computing engine part of it. Leaf nodes of the tree are the finest granular­
ity structure of control; the overall system therefore supports both a single­
instruction, multiple-data (SIMD) and a MIMD processing capability.

The Columbia University DADO system has been designed as a pure bi­
nary tree machine, targeted at handling expert production systems. A board
will contain a six-level tree, where each node is planned to have substantially
more processing power than that of Non-Von.

Among the pyramid family, a few proposals have reached the prototype
stage. With a single exception, all systems adopt the quad-pyramid structure.
They differ in the level of integration and in the interconnection scheme used
at board level more than in the processing capabilities of the PEs. These sys­
tems will be described in detail in Chapter 5.

3.S. CONCLUSIONS

In order to exploit hierarchical processes that can be useful in many appli­
cation fields, several systems belonging to network computer, multicomputer,
and multiprocessor families have been proposed and sometimes built following
a hierarchical paradigm. In this chapter, the most popular topologies of these
systems have been described and the main features and characteristics of these
structures have been analyzed and compared on the basis of general loading as­
sumptions.

REFERENCES

1. L. N. Bhuyan, Q. Yang, and D. P. Agrawal, Performance of multiprocessor interconnection
network, Computer 22 (2), 25-36 (1989).

2. D. A. Reed and H. D. Schwetman, Cost-performance bounds for multimicrocomputer net­
works, IEEE Trans. Comput. C·32 (I), 83-95 (1983).

3. R. A. Finkel and M. H. Solomon, Processor interconnection strategies, IEEE Trans. Comput.
C·29 (5), 360-371 (1980).

4. 1. R. Goodman and S. H. Sequin, Hypertree: a multiprocessor interconnection topology, IEEE
Trans. Comput. C·30 (12),923-933 (1981).

www.manaraa.com

Hierarchical Homogeneous Topologies 101

5 B W Arden and H Lee, A regular network for multIcomputer systems, IEEE Trans Com­
put C-31 (1), 60-69 (1982)

6 F J Meyer and D K Pradhan, Flip-trees fault tolerant graphs with wide containers, IEEE
Trans Comput C-37 (4), 472-478 (1988)

7 K Hwang and J Ghosh, Hypernet a commumcatIon-efficlent archltecrure for constructing
maSSively parallel computers, IEEE Trans Comput C-36 (12), 1450-1466 (1987)

8 F Devos, A Mengot, and B Zadovlque, IntegratIOn d'un processeur cellulalre pour une
architecture pyrarmdale de traItement d'image, Rev Phys Appl 20,23-27 (1985)

9 V Cantom, M Ferretti, S Levlaldl, and R Stefanelli, PAPIA pyramidal archltecrure for
parallel Image analYSIS, Proc 7th Symp Computer Anthmelic, Urbana II, 1985, pp 237-242

10 V P Nelson, Fault-tolerant computing fundamental concepts, Computer 23 (7), 19-25
(1990)

11 C R Lang, The extensIOn of obJect-onented languages to a homogeneous concurrent archltec­
rure, TR 5014, Computer SCience Dept, California InstItute of Technology, Pasadena (1982)

12 D P Bhandarkar, AnalYSIS of memory Interference In multIprocessors, IEEE Trans Comput
C-24, 897-908 (1975)

13 J P Hayes, A graph model for fault tolerant computing systems, IEEE Trans Comput C-2S
(9), 875-883 (1976)

14 C L Kwan and S TOlda, An oplimal fault tolerant realizatIon of symmetncal hierarchical
tree systems, Networks 12, 231-239 (1982)

15 C S Raghlavendra, A AVlzlems, and M Ercegovac, Fault tolerance In binary tree architec­
tures, IEEE Trans Comput C-33 (6), 568-572 (1984)

16 M B Lowne and W K Fuchs, Reconfigurable tree architectures USing sub-tree onented fault
tolerance, IEEE Trans Comput C-36 (10), 1172-1182 (1987)

17 C H Sequin, Single chip computers, the new VLSI bUilding blocks, Proc VLSI Conf,
California Institute of Technology, Pasadena (1979)

18 D P Agrawal and V K Janakiram, Evaluating the perfonnance of multicomputer configura­
tIons, Computer 19 (5), 23-37 (1986)

19 V Cantom and S LeVIaldl (eds), Pyramidal Systems for Computer VISIOn, Spnnger-Verlag,
Berlin (1986)

20 A Rosenfeld (ed), MuiflresoiutlOn Image Processmg, Spnnger-VerJag, Berlin (1984)
21 J R Amstrong and F G Gray, Fault diagnOSIs In a boolean n-cube array of microprocessors,

IEEE Trans Comput C-30 (8), 587-590 (1981)
22 V Cantom, M Ferretti, and L Lombardi, A companson of homogeneous hierarchical inter­

connectIOn structures, Proc IEEE 79 (4), 416-428 (1991)
23 J D Ullman, Computaflonai Aspects of VLSI, Computer SCience Press, Rockville, MD

(1984)
24 C D Thompson, A compleXity theory for VLSI, Ph D dissertatIOn, Carnegie-Mellon Umv ,

Dept Computer SCience (1980)
25 D Gordon, EffiCient embedding of binary trees In VLSI arrays, IEEE Trans Comput C-36

(9), 1009-1018 (1987)
26 H Y Y oun and A D Singh, On Implementing large binary tree architectures In VLSI and

WSI, IEEE Trans Comput 38 (4),526-537 (1989)
27 N AhUJa, EffiCient planar embedding of trees for VLSI layou, Proc 7th Int Conf Pattern

RecogmtlOn, Montreal, 1984, pp 460-464
28 D L Milgram and A Rosenfeld, Array automata and array grammars, Proc IFIP Congress

1971, pp 166-173, North-Holland, Amsterdam (1971)

www.manaraa.com

102 Chapter 3

29. T. A. Ottman, A. L. Rosenberg, and L. J. Stockmeyer, A dictionary machine (for VLSI),
IEEE Trans. Comput. C-31 (9), 892-898 (1982).

30. H. Samet, The quadtree and related hierarchical data structures, Comput. Surv. 16, 187-260
(1984).

31. R. J. Swan, S. H. Fuller, and D. P. Siewiorek, Cm*-a modular multiprocessor, Proc. AFlPS
Nat. Compo Conf., 1977, pp. 637-663.

32. E. Appiani, G. Barbagelata, F. Cavagnero, B. Conterno, and R. Manara, EMMA2, an indus­
try developed hierarchical multiprocessor for very high performance signal processing applica­
tions, Proc. 1st Int. Conf. Supercomputing Systems, St. Petersburg, FL, 1985.

33. D. W. Shaw, Organization and operation of a massively parallel machine, in Computers and
Technology (G. Rabat, ed.), North-Holland, Amsterdam (1986).

34. H. A. H. Ibrahim, J. R. Kender, and D. E. Shaw, On the application of massively parallel
SIMD tree machines to certain intermediate-level vision tasks, Comput. Vision, Graphics Im­
age Process. 36,53-75 (1986).

35. M. Sharma, N. Ahuja, and J. H. Patel, An architecture for a large scale multiprocessor vision
system, in Parallel Computer Vision (L. Vhr, ed.), pp. 87-105, Academic Press New York
(1987).

36. S. J. Stolfo and D. P. Miranker, The DADO production system machine, 1. Parallel Distrib­
uted Comput. 3 (2), 269-296 (1986).

www.manaraa.com

Chapter 4

A Taxonomy of Hierarchical Machines
for Computer Vision

This chapter expands the notion of hierarchy by analyzing a variety of existing
and proposed hierarchical systems which at various stages match the computa­
tional structure of a general computer vision task. Such systems have been
based on different paradigms (Pipeline, SIMD, Multi-SIMD, MIMD, etc.), of­
ten mixed in various ways. A taxonomy will be presented in order to introduce
a number of different families of these machines. The taxonomy is based on
two hierarchical levels: the first splits the systems into homogeneous or hetero­
geneous ones according to the capability of processing modules; the second is
based on the ways of coupling the modules and on the interconnection networks
(tight-loose , compact-distributed, fixed-reconfigurable) .

4.1. PARADIGM FOR COMPUTER VISION

The huge amount of visual sensory data produced even by standard acqui­
sition systems cannot be processed in near real time by means of the sequential
von Neumann machine and requires massively parallel systems. Moreover, the
computational paradigm in the image analysis process varies widely; it is there­
fore difficult to find a unique architecture which is able to cope with the differ­
ent requirements. l More specifically, the data structure and the computational
structure change as shown in Figure 4.1, which highlights the hierarchical na­
ture of the three processing stages briefly described subsequently.

103

www.manaraa.com

104

ANALYSIS
L&VEL

ComputatIonal
CharactertstiCll

LOW

'Retlnotoplc·
Processing

Local

Properties

AmOunt _

of data ,............-

II'rI1':RM&OlAiE

RegJonal
~

JmaBe Segment

Properties

Chapter 4

HICH

Symbollc
Processing

eat~ Scene or PredIcates
Object

Properties

Figure 4.1. Three computational steps transform image pixels into predicates describing a scene:
(i) a preprocessing stage; (ii) an intermediate description; (iii) the final interpretation.

4.1.1. Preprocessing

The goal of preprocessing is to tune up the data for successive analysis.
This typically amounts to enhancing the image, by sharpening the contours,
suppressing the background, removing noise, etc., or involves restoring it, by
removing geometrical distortions, by amending optical defects, etc. The opera­
tion involved corresponds to an "image-to-image" transformation, so the data
structure is fixed: the original bidimensional array of pixels. From the computa­
tional point of view, three different operation types can be considered: point­
dependent operations (thresholding, requantization, encoding, etc.), local op­
erations (filtering, template matching, convolution, geometrical correction,
relaxation, etc.), regional and global operations (digital transforms like Fourier,
Hadamard, Haar, etc.).

Most of the computations quoted share the following characteristics:

• Spatial invariancy The same sequence of instructions is executed on
all points of the image, i.e., it is data independent.

• Locality At each point the final result is dependent only on a limited
window around it.

• Fixed data structure The result still remains an image array.

Because of its affinity with the peripheral stages of the human vision sys­
tem, this phase is usually referred to as low-level processing and some authors
call it retinotopic processing.

4.1.2. Intermediate-Level Processing

The final goal of intermediate-level processing is the extraction of salient
features and pertinent primitives of the image components.2 In order to achieve

www.manaraa.com

A Taxonomy of Hierarchical Machines 105

this the first processing phase is the segmentation of the image, i.e., the identi­
fication of homogeneous parts. Different criteria can be used to establish its
homogeneity, the more common ones being based on morphological or chro­
matic characteristics, position in space, movement, etc.

The second phase is the description of segments. For each segment, some
features are extracted on the basis of the gray-level statistics (histogramming,
cooccurrences, etc.) and other parametrization techniques (moments, shape de­
scriptors, etc.) by means of basic operations such as medial axis transforma­
tion, skeletonization, and edge following. 3

This intermediate level corresponds globally to an "image-to-features"
transformation. Following this, the data structure, initially a bidimensional
array matching the image, changes toward more flexible structures, such as
arrays or lists of features, and adjacency graphs. The choice of the features and
of the proper data structure, which sets the level of abstraction for the content
description of the image, is the critical issue.

From a computational point of view, it is important to note that often the
operations required at this step realize regional processes which are a priori not
diameter limited (local operations typical of the low-level phase still remain,
but the majority of the computations depend on global support). The processing
control at the intermediate level shows a transition from data parallelism to task
parallelism. This is a peculiarity which clearly distinguishes this intermediate
stage and compromises the efficient tuning of architectures to the tasks in
question.

4.1.3. High-Level Processing

The final goal of high-level processing is the identification of image con­
tents. Two main phases can be distinguished: symbolic description and scene
understanding.

In the former by working on salient features, a more compact description
is developed which makes the relationships among the image primitives ex­
plicit. The data structures of this step are usually trees, graphs, semantic net­
works, frames, and so on, where items represent symbols at higher levels of
abstraction with respect to the original feature.4 This phase corresponds glob­
ally to a "features-to-symbols" transformation.

In the latter phase of scene understanding, the aim is to produce an inter­
pretation of image contents on the basis of a symbolic description and of the
knowledge about the scene context. The objects present in the scene are labeled
and identified as are the relationships among them. In this phase the data struc­
ture pertains to knowledge representation. A correspondence must be found

www.manaraa.com

106 Chapter 4

between symbolic descriptions and an explicit or implicit model of the scene to
be analyzed. From the computational point of view, high flexibility is required
to structure, coordinate, and integrate the different matching processes that can
be applied concurrently. The amount of data to be dealt with can be huge, not
so much for the symbolic scene description but mainly because of the knowl­
edge required for the context. "Scene understanding" corresponds overall to a
"symbols-to-predicates" transformation. 5

Often in this phase some complementary information from previous stages
are needed to produce new measurements or parameter values, or even change
parameters once a partial interpretation has occurred. That is, image under­
standing is not a straightforward linear process but relies on feedback and back­
tracking procedures.

The term high-level vision, which usually denotes this last stage of the
paradigm of computer vision, hints at the processes carried out by the upper
layers of the vision system in humans. 6

4.1.4. Three Possible Computational Frameworks

The logical sequence of the three phases described introduces a hierarchy
in which the level of abstraction grows while the amount of data decreases.
Three computational paradigms have been proposed to accomplish the hierar­
chical steps mentioned:

• The first follows a data-driven, bottom-up approach, in which control
flows from low-level to high-level processing (each step works inde­
pendently and passes its output onto the next step).

• The second follows a top-down approach, in which processing is goal
driven and the control flows from a high level to a low level.

• The third is a more general heterarchical approach, as mentioned in
describing the last processing stage; it is shown in Figure 4.1. In this
hybrid case, the previous two solutions are interleaved on the basis of
partial results; inconsistencies, ambiguities, or incomplete recognitions
are detected and solved by feedback to the previous steps.

4.2. TAXONOMY OF HIERARCHICAL MACHINES

As claimed by many authors, high speedups can be obtained by matching
the architecture to the data structure and/or to the computational structure. I. 7

However, in computer vision, the data structure changes from a "large," fixed

www.manaraa.com

A Taxonomy of Hierarchical Machines 107

array of pixels of the initial steps to "small," flexible structures of the high­
level steps. The computational structure also varies; the first steps deal with
image-to-image transformations, identical operation applied to all pixels, and
fine granularity (the computation involved for one pixel requires the analysis of
its own local context). The last steps deal with data-dependent (asynchronous)
operations, sometimes intrinsically sequential and recursive, with coarse-granu­
larity communications and flexible data structures.

The SIMD and pipeline architectures are, of course, well suited for the
low-level steps that require data-independent, synchronous, fine-grained opera­
tions; however, there are also among these steps tasks for which a more flexible
structure would be preferable (typical low-level data-dependent operations are
restoration with spatially variant point-spread function, split-and-merge tech­
niques, etc.).

The MIMD architecture is not suited to synchronous operations but to
high-level processing steps, which are usually composed of irregular, asynchro­
nous, and coarse-grained subtasks.

For these reasons several hierarchical solutions have been proposed based
on Pipeline, SIMD, Multi-SIMD, and MIMD paradigms mixed in various hier­
archical ways. 8 In Figure 4.2 a taxonomy of the hierarchical systems which
have been so far proposed is presented. Even the taxonomy is based on a

Loosely
Coupled

Hierarchical
Computer VIsion

Systems

Closely
Coupled
~
L:::..J

""

Dlstrtbuted
Pyramid

Figure 4.2. Classification scheme of the hierarchical systems. Two levels logically characterize
the taxonomy: the first refers to homogeneity and the latter to type of coupling .

www.manaraa.com

108 Chapter 4

hierarchical scheme: the first criterion partitions the systems into homogeneous
and heterogeneous classes; the second specializes the homogeneous family into
compact and distributed architectures, and the heterogeneous case is split by
coupling the components into loosely coupled and tightly coupled categories.

As shown in Chapter 1, in the theory of hierarchical modular systems,
elements which go from the lowest to the highest levels of the hierarchy are
given an increasing value. This fact, in many proposed hierarchical machines,
leads to heterogeneous systems, in which more powerful processors are se­
lected for the higher hierarchical levels. This specialization of the processors
according to level contrasts with the system modularity: for this reason many
homogeneous systems have been proposed as well.

In this last family of machines, basically two different kinds of approaches
have been used: one involves architectures characterized by large-scale systems
composed of very simple elementary processing elements (PEs), the so-called
megamicrocomputers9; the other involves architectures characterized by very
powerful processing units (PUs), used in fairly large amounts (i.e., hundreds,
but still two orders of magnitudes less than in the previous case), which is
enough to justify the term massive parallel systems.

This dichotomy is reflected in the technology and in the granularity of the
system. VLSI capabilities are used in the former case to integrate the largest
possible number of PEs in a single chip; meanwhile in the latter case they are
used to augment the processing features of the PUs in terms of on-chip cache,
memory management and floating-point units, bus interfacing, and richer
connectivity.

Concerning granularity, PE-based machines are conceived with one proc­
essor per pixel; these PEs are usually specialized for near-neighbor operations
which are a relevant percentage of all the processing that they carry out. For
these reasons, systems based on PEs are classified as fine-grained machines. In
the other case each PU takes care of a subimage stored in its own local memory
and predominantly computes block properties autonomously, with less frequent
inter-PU data exchanges, thus embodying coarse-grained computations.

In the heterogeneous family the loosely coupled machines are network
centered; i.e., the interconnection structure is a central resource which is in
charge of managing the flow of information and which heavily influences the
system's performances. The second family is characterized by tight-coupled
systems, where intercommunications are realized by sharing memory or first­
in-first-out (FIFO) queues. These systems can be classified as processor cen­
tered, since it is the processor which directly handles the data exchanges.

Subsequently a few details are given for each of the four families resulting
from the two-level taxonomy.

www.manaraa.com

A Taxonomy of Hierarchical Machines 109

4.2.1. Heterogeneous Loosely Coupled Class

The machine in the heterogeneous loosely coupled class is composed of
several parts: usually a SIMD array is demanded for low-level image pro­
cessing, while different processors (usually MIMD units) are needed for the
intermediate- and high-level phases. These subunits are physically different and
coupled by buses, links, or multistage networks. This kind of interconnection
does not make information exchanges between the subparts easier, but, due to
their independence, autonomous design, implementation, and debugging are
possible. The loose interconnection between the SIMD and MIMD parts allows
us to achieve the best performances when the system executes the rather coarse­
grained computations which are mapped on the subunits.

At least two systems can be classified in this family even if both do not
follow completely the paradigm just described: the Non-Von system has been
shortly described in Section 3.7.3, and the PASM system, briefly introduced
next, and described in more detail in Section 8.4.

The PASM machine, developed by Siegel lO at Purdue University, consists
of 1024 processing units organized into 16 groups; each group has its own
control unit as shown in Figure 4.3. The apex of this three-level hierarchy is
the system control unit. Adjacent groups may be dynamically configured so
that they behave as a single-SIMD system. Presumably, for low-level image
processing tasks, the system would be configured as a single-SIMD machine
with 1024 PUs. Data exchanges in this machine are easy, but some overhead,
with respect to a standard SIMD machine (e.g., if this is operating in the broad­
casting-gating mode), may arise in low-level processing when all the SIMD
subsystems are working in a tightly "orchestrated" mode, and neighboring
access is needed. The interconnection network among the groups of leaves is

Figure 4.3. Simplified structure of the
Partitionable SIMD/MIMD machine. PU
clusters are driven hierarchically by a two­
level controlling scheme. The first proto­
type has M= 16 and N=64.

www.manaraa.com

110 Chapter 4

of the dynamic permutation type; this horizontal interconnection completes the
vertical tree structure which implements the hierarchy.

4.2.2. Heterogeneous Closely Coupled Class

In the heterogeneous closely coupled family, the coupling among the sys­
tem subunits is physically realized through shared memory and logically imple­
mented by certain synchronization primitives. Also in heterogeneous closely
coupled systems, two main units can be functionally identified for the low-level
and higher-level tasks. These are a SIMD and a MIMD part respectively. Usu­
ally, a SIMD subsystem is devoted to each PU of the MIMD structure so that
the two parts are integrated (e.g., Uhr's Array/Netll IUAi2, and WPM I3).

In Figure 4.4 a paradigm for this family of machines is shown. The two
subsystems are physically distinct and linked through as many dual-ported
memories as there are processors within the MIMD part. Indeed several buses
are necessary between the SIMD structure which exchanges its data with the
memory in a synchronous mode (each bus is supplying information from/to a
subset of SIMD PEs) and the MIMD structure which works asynchronously
with the same memory. A large number of communication buses increases
the capacity to exchange data while introducing a certain amount of interface
complexity. In this machine each PU of the MIMD part is linked to four close
neighbors in a mesh topology. Since each processor in the MIMD component
interacts with several PEs in the SIMD part, the data parallelism in the two
subunits is different: hence an interface with both multiplexing and buffer capa­
bilities is needed. These buffers (the coupling memories in Figure 4.4) can be
considered as external memories for both the MIMD and SIMD subunits.

4.2.3. Homogeneous Compact Pyramid

The homogeneous pyramidal structure has been formally defined, from the
topological viewpoint, in Section 3.5.4. In this section the discussion will be
restricted to the compact case. The architecture of this class of machines stems
from two distinct but converging efforts: exploiting VLSI technology to pro­
duce very large arrays of PEs and taking advantage of multiresolution tech­
niques which have proved to be extremely useful in image processing. Cellular
arrays, as, for example, CLIP4,14 MPp,15 DAP,16 and more recently massively
parallel fine-grained systems, as the Connection Machine17 and MasPar,18. 19
build a network of fairly simple, bit-serial PEs (with the exception of MasPar,
which has a nibble-based data path) by integrating a set of such processors in
a single chip. The homogeneity of the processors is the key item for a success-

www.manaraa.com

A Taxonomy of Hierarchical Machines

MIMD
PUs

Array

SIMD
PEs

Array
--,~

"

, ,

Coupling
Buffer

Memory

111

Figure 4.4. Simplified structure of a heterogeneous machine consisting of a MIMD and a SIMD
subunit coupled by means of dual-ported shared memory.

ful VLSI realization. The current level of technology allows the construction
of chips containing a number of PEs ranging in the hundreds. Obviously, the
small silicon area allocated to each PE limits its processing autonomy: the array
activity is completely "orchestrated" by a powerful external controller which
broadcasts the instruction stream to the array. Furthermore, the interconnecting
structure is fixed, and each PE communicates directly with its immediate neigh­
bors in the underlying topology, which is a grid in cellular arrays, a hypercube
in the Connection Machine, and a shuffle-exchange network in the MasPar (in
addition to the grid network).

www.manaraa.com

112 Chapter 4

Nevertheless, a mismatch still exists between the largest array of PEs
which is economically feasible and the size of the images to be processed. So,
some problems arise because only a small portion of the image can be pro­
cessed simultaneously: the approach is to distribute the image to the PEs one
subimage at a time. Difficulties arise in the block border processors when per­
forming local operations; in fact, the neighbor data of these PEs are not directly
available. Moreover, if such operations are iterated many times, the set of
active PEs shrinks at every step.

Homogeneous compact pyramids (see Figure 3.14) extend the cellular
array topology by stacking arrays of decreasing size on top of each other. 20 As
a consequence, this kind of architecture not only allows SIMD operations but
also Multi-SIMD processing as well, provided that the controller of the system
is capable of synchronizing data exchange among the adjacent layers. Among
the machines in this family are (in chronological order) PCLIP,2! PAPIA,22
GAM,23 SPHINX.24

4.2.4 Homogeneous Distributed Pyramid

An alternative way of conceiving a pyramidal computer is to use a limited
number of identical but powerful PUs (usually in the order of tens). The capa­
bilities of the PUs allow us to realize the topology in different ways: either a
network computer solution25 or a distributed shared-memory solution such as
the Erlangen general-purpose array (EGPA) developed at the Erlangen
University. 26

A representative system for the general homogeneous distributed pyramid
family is the quad pyramid of the EGPA, shown in Figure 4.5. This system is
a three-level pyramid containing 21 processor memory modules (PMMs) with
mutual memory access among neighbors. There are 16 PMMs in the lower
level, 4 in the middle, and one supervisor PMM at the apex. Each PMM also
has access to the memory of the four children. In this way, by means of com­
mon control blocks and mailbox techniques, interprocessor communications be­
tween neighboring workers and between supervisor and generic worker (in uni­
directional mode) are achieved.

Due to the moderate number of PUs, when these machines are used for
low-level image processing, a suitable approach is the distribution of the PUs
throughout the image. Following this approach, each PU deals with a sub­
image, and, therefore, an overhead caused by the border problem and by the
coordination of the PUs must be taken into account. With respect to the homo­
geneous compact pyramid case, their increased flexibility favors high-level pro­
cessing at the expense of low-level processing. Access to the near neighbors of

www.manaraa.com

A Taxonomy of Hierarchical Machines 113

Figure 4.5. The distributed EGP A pyramid: each PU has access to its own local memory and to
brother and children memories.

each pixel becomes serial, and, for many low-level tasks in which local opera­
tors are very frequent, this becomes a serious bottleneck. 27

The high flexibility of these coarse-grained systems allows different opera­
tive modalities: the preeminent one is the MIMD mode, but in many practical
applications data partitioning is implemented and the PUs execute multiple in­
stances of the same instruction sequence in a Single-Program-Multiple-Data
(SPMD) modality ("'). Moreover, the PU interconnection can be conceived by
a multistage dynamically reconfigurable network, which eases the mapping of
the task onto available PUs.

4.3. CONCLUSIONS

In this chapter a few paradigms for creating a hierarchical system for com­
puter vision have been introduced and organized in a two-level hierarchical

www.manaraa.com

114 Chapter 4

taxonomy. The discussion has only highlighted the main characteristics of the
systems; later chapters cover in more detail some of the families which have
been introduced here, by analyzing implementations issues, functional proper­
ties, and typical applications within the computer vision domain.

Presently, the systems that in one way or another fall within the families
outlined in the taxonomy and that have at least reached the prototype stage do
not always share all the distinctive characteristics which have just been out­
lined. In some cases, the architecture embodies the paradigm of its family quite
extensively, while in others the match is only partial. There are even situations
where an architecture, which is definitely outside the taxonomy, has been used
to emulate an instance of a machine among those considered here. This case is
also covered in a following chapter, since the hierarchical processing mode is
considered effective even when the architecture at hand has no special feature
to support it.

REFERENCES

1. V. Cantoni and S. Levialdi, Matching the task to an image processing architecture, Comput.
Vision, Graphics Image Process. 22 (2), 301-309 (1983).

2. M. 1. B. Duff (ed.), Intermediate-Level Image Processing, Academic Press, London (1986).
3. A. Rosenfeld and A. C. Kak, Digital Picture Processing, Academic Press, New York (1982).
4. D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, Nl

(1982).
5. A. P. Pentland (ed.), From Pixels to Predicates, Ablex, Norwood, Nl (1986).
6. M. A. Fischler and O. Firschein, Intelligence: The Eye, the Brain, and the Computer, Addi­

son-Wesley, Reading, MA (1987).
7. M. 1. B. Duff (ed.), Computing Structures for Image Processing, pp. 1-14, Academic Press,

London (1983).
8. V. Cantoni and S. Levialdi (eds.), Pyramidal Systems for Computer Vision, NATO ASI Series

F, Vol. 25, Springer-Verlag, Berlin (1986).
9. L. D. Wittie, Efficient message routing in mega-micro computer networks, Proc. Third Symp.

Computer Architectures, 1976, pp. 136-140.
10. H. 1. Siegel, PASM: A reconfigurable multimicrocomputer system for image processing, in

Languages and Architectures for Image Processing (M. 1. B. Duff and S. Levialdi, eds.), pp.
257-266, Academic Press, London (1981).

II. L. Uhr, 1. Lackey, and L. Thompson, A 2-layered SIMD/MIMD parallel pyramidal 'arrayl
net,' Proc. Workshop on Computer Architectures for Pattern Analysis and Image Data Base
Management, 1981, pp. 209-216.

12. G. R. Nudd, D. 1. Kerbyson, T. 1. Atherton, N. D. Francis, R. A. Packwood, and G. 1. B.
Vardin, A massively parallel heterogeneous VLSI architecture for MSIMD processing, in Al­
gorithms and Parallel VLSI Architectures (F. Deprettere and A. Van der Veen, eds.), pp.
463-472, Elvesier, Amsterdam (1991).

13. C. C. Weems, E. M. Riseman, and A. R. Hanson, Image understanding architecture: ex­
ploiting potential parallelism in machine vision, Computer 25 (2), 65-68 (1992).

www.manaraa.com

A Taxonomy of Hierarchical Machines 115

14. M. J. B. Duff, Review of the CLIP image processing system, AFIPS Conf. Proc., Vol. 47,
NCC, 1978, pp. 1055-1060.

15. K. E. Batcher, Design of a massively parallel processor, IEEE Trans. Comput., C-29, (9),
836-840 (1980).

16. D. J. Hunt, The ICL DAP and its application to image processing, in Languages and Architec­
tures for Image Processing (M. B. J. Duff and S. Levialdi, eds.), Academic Press, London
(1981).

17. W. D. Hillis, The Connection Machine. MIT Press, Cambridge, MA (1982).
18. T. Blank, The MasPAr MP-I Architecture, Proc. IEEE Compcon, 1990.
19. J. R. Nickolls, The design of the MasPar MP-l: a cost effective massively parallel computer,

Proc. IEEE Compeon, 1990.
20. C. R. Dyer, A VLSI pyramid machine for hierarchical parallel image processing, Proc. PRIP,

Dallas, TX, 1981, pp. 381-386.
21. S. L. Tanimoto, T. J. Ligocki, and R. Ling, A prototype pyramid machine for hierarchical

cellular logic, in Parallel Computer Vision (L. Uhr, ed.), pp. 43-83, Academic Press, Or­
lando (1987).

22. V. Cantoni, M. Ferretti, and S. Levialdi, PAPIA: pyramidal architecture for parallel image
analysis, Proc. 7th Symp. Computer Arithmetic, Urbana, IL, 1985, pp. 237-242.

23. D. H. Schaefer, G. C. Wilcox, and V. J. Harris, A pyramid of MPP processing elements­
experiences and plans, Proc. 18th Ann. Hawaii Int. Conf. System Science, Vol. I, 1985,
pp. 178-184.

24. F. Devos, A. Merigot, and B. Zavidovique, Integration d'un processeur cellulaire pour une
architecture pyramidale de traitement d'image, Rev. Phys. Appl. 20, 23-27 (1985).

25. L. D. Wittie, Communications structures for large multi-micro-computer systems, IEEE
Trans. Comput. C-30 (4), 264-273 (1981).

26. G. Fritsch, General purpose pyramidal architectures, in Pyramidal Systems for Computer Vi­
sion (V. Cantoni and S. Levialdi, eds.), pp. 42-58, Springer-Verlag, Berlin (1986).

27. P. E. Danielsson, Vices and virtues of image parallel machines, in Digital Image Analysis (S.
Levialdi, ed.), pp. 47-59, Pitman, London (1984).

www.manaraa.com

Chapter 5

Compact and Distributed Pyramids

Here we consider the pyramid hierarchical homogeneous architectures. When
designing a pyramid structure, we may follow two different approaches: the
first with fine granularity, where one processor per image pixel is conceived,
and the second with coarse granularity, where one microprocessor is associated
with an image block. Subsequently, a detailed description of the projects which
reached the prototype stage will be given, while looking comparatively at the
various salient features.

5.1. INTRODUCTION

In pyramid structures several editions of the same image at different reso­
lution levels are available, thus supplying the capability to implement multires­
olution approaches. In particular, planning strategies and multigrid methods can
be effectively implemented.

As previously described, in the former case a solution of the problem is
pursued at the higher levels after which the solution is successively refined step
by step toward the base. If the second phase of refinement properly exploits
the hardware structure, and the amount of computations required at the low
resolution levels is restricted because of the small quantity of data, the speedup
factor can be even greater than the number of processors (in this way the linear
scaling assumption can be overcome).

The latter case is an outstanding peculiar implementation of the previous

117

www.manaraa.com

118 Chapter 5

approach. For example, consider the problem of solving partial derivative equa­
tions (described extensively in Section 10.4.1). After the construction of
multigrid editions of the equations by reprocessing on the higher levels, a solu­
tion is found on one of the higher layers of the pyramid. This can be performed
with few iterations because of the small amount of data. Then, by interpolation,
the initial values for a refined solution on the next lower level are provided.
Each partial result is usually achieved by means of a few recursive steps in
each new layer until the final solution is obtained on the pyramid base.

In order to effectively implement these processes several pyramid ma­
chines have been proposed and built following the compact and distributed
pyramid paradigms described in Sections 4.2.3 and 4.2.4 respectively.

The first group corresponds to SIMD machines in which several layers of
identical processors are organized in a tightly orchestrated mode. The approach
is to set up systems using the largest number of processing elements (compati­
ble with economical and technological reasons) by executing the same opera­
tion in parallel, despite the simple-processing-unit. For this reason the word
length is set at 1 bit and serial arithmetic is adopted. In the flat-array case this
solution has been called image-to-processor distribution. 1 These systems are
suitable for the implementation of planning strategies, multigrid solutions, and
low-level image processing (even if border problems arise when the image size
is greater than the matrix of processors in the base). However the implementa­
tion of high-level image processing is cumbersome and less effective.

The distributed pyramid uses an approach which is equivalent to the one
called "processor-to-image distribution" in the flat-array cases and which leads
to a "small" number of identical, powerful processors. In this case each proc­
essor for low-level vision tasks deals with a portion of the image (obviously
also in these cases an overhead due to the border problem occurs). With respect
to the previous solution, there are some general gains in flexibility and capabil­
ity for high-level image processing in spite of the low-level processing power
(there is a lack of efficiency in implementing propagation and all common
recursive operations).

In what follows, the main features and characteristics of the most popular
machines for the compact and distributed cases respectively will be introduced
in more detail in Sections 5.2 and 5.3.

5.2. COMPACT PYRAMIDS

Alternative solutions are possible within this paradigm. These shall be
described in different chapters: physical pyramids (this chapter), which match

www.manaraa.com

Compact and Distributed Pyramids 119

the definition of the quad or bin pyramid in hardware and are therefore 3-D
systems; simulated pyramids or augmented mesharrays (Section 7.1), which
either use the bare flat array as a simulating architecture or add a minimal extra
connection capability to ease the burden of data collection between PEs at dif­
ferent levels; and virtual pyramids embedded in a flat mesh structure (Section
7.3).

At least four systems exist which can be defined as true physical pyramids:
PAPIA 1,2 designed by a consortium of Italian universities, PCLIP,3 in some
papers also called HCL, of Washington University, GAM4 from George Mason
University, and SPHINX5 by Universite Paris Sud. They provide a good frame­
work to analyze the characteristics of compact pyramids; in this context,
they will be reviewed and the different solutions they adopt for the construc­
tion of a working machine will be highlighted. First, the basic features of
the four pyramids are introduced and compared, focusing on interconnection
topology, processing element capabilities, chip complexity, and system­
prototype assembly. Subsequent sections describe the systems in detail, point­
ing out the components which integrate the pyramid in a fully functioning
machine.

5.2.1. Interconnection Topology

As mentioned in Section 3.5.4, tessellation topology, degree of reduction
between levels, width of support of each new element above the base, and
number of levels are the four parameters which define pyramids.

All the aforementioned systems adopt square mesh tessellation. This con­
nects the PEs within a plane in a grid; PAPIA 1, GAM, and SPHINX use 4-
connectivity, while PCLIP uses 8-connectivity. As for the other parameters,
two solutions have been followed: PAPIA 1, GAM, and PCLIP adopt the to­
pology of the quad pyramid, in which hierarchical connections reduce the num­
ber of processors at each new level by a factor of 4. SPHINX uses a reduction
factor of 2, which results in the bin pyramid. The designers of this system
motivate their choice, among other reasons, with the observation that the pro­
cessing unit of the PE is usually a two-input device. The two topologies are
show in Figure 3. 14.

No effort has been made to build systems according to the definition of
overlapped pyramids. The extra connections required to provide for over­
lapped, hierarchical domains would increase the complexity, already relevant,
of such systems, and it can be argued that the benefits over simulated solutions
might be minor, even for segmentation tasks. 6

www.manaraa.com

120 Chapter 5

o . St<>r1lg< elemen' IQJ • LoS" unl! o . Multi]>l .. e,

Figure 5.1. Block diagram of the PE of a compact pyramid system.

5.2.2. Processing Element Capabilities

Since all these systems are designed to take advantage of VLSI technology
to integrate more PEs into a single chip, the architectures tend to be rather
simple and so all adopt bit-serial processing. Nevertheless, it is worthwhile
comparing the four systems from the point of view of PE architecture. To do
this, one can identify five basic items: near-neighbor access, working storage
organization, arithmetic and logical unit, local control, and image loading and
unloading (see Figure 5.1).

5.2.2.1. Near-Neighbor Access

The near-neighbor-access function, which is the most unique capability of
all fine-grained cellular architectures, is even more important in systems aimed

Figure 5.2. Near neighborhood of a PE in a compact
quad pyramid with 8-connectivity, without overlapping.
Among the lateral neighborhood there are three siblings,
and the hierarchical neighbors are subdivided into parent
and children.

www.manaraa.com

Compact and Distributed Pyramids

Figure 5.3. Partial block diagram of the interconnec­
tion involved with the broadcasting-gating near-neigh­
bor operation. The scheme refers only to the wiring of
the central PE and is limited to the lateral interconnec­
tion in 8-connectivity.

121

at multiresolution processing, where interlevel data exchanges can be the domi­
nant activity. Given the total near neighborhood (NN) of a PE (see Figure 5.2)
which consists of processors on the same plane (lateral neighbors or brothers),
on the plane below (children), and on the plane above (parent), one can adopt
two different strategies to access the information:

o Multiplexing. Data are fetched from neighboring PEs without pro­
cessing. Data come directly from a neighbor to the data-in line of each
PE. In this way, a piece of NN data at a time is available to the PE.

o Gating. A Boolean function is applied to data coming from NNs with
a defined enabling vector. In this wayan arbitrary subset of the NNs
can be locally manipulated at once. Until now, no autonomy has been
given to this operation: both the subset and the Boolean function are
fixed for the full array (a proposal which introduces a first degree of
autonomy is YUPPIE,? in which a binary interconnection status register
selects between two possible elementary paths). In Figure 5.3 the basic
scheme of the broadcasting-gating technique is shown. Here a detailed
description of NN operations for this family of fine-grained machines
follows.

a. Near-Neighbor Operations. A general expression of the code of these
machines for NN operations is

z = <P(X, T) edge E (5.1)

where Z is the PEs internal register which stores ALU results; <P(',') represents
one of the ALU Boolean operations (usually the set includes AND, OR, NOT,

www.manaraa.com

122 Chapter 5

EXOR, etc.), X is the set of internal registers which can feed the ALU, Tis
the result of the NN data combination; finally E indicates the value transmitted
to the border processors from the external frame.

Note that, in particular, it is possible to extract data from just one neighbor
by using a minterm in the NN enabling vector.

A class of operators that directly exploits the NN access capability (in just
one clock cycle for structuring elements contained in the 3 X 3 subarray) is that
belonging to basic mathematical morphology; namely erosion and dilation (the
"hit or miss" operator requires a few clock cycles). Alternative implementa­
tions of the basic morphological operations have been used (e.g., in Yoda et
al. 8 for erosion, dilation, and restricted broadening applied to automatic inspec­
tion problems) with higher computation time but with less expensive hardware.
What makes the fine-grained solution more attractive is discussed in the next
section.

b. Recursive NN Operations. In fine-grained machines PEs have direct
access only to nearest neighbors, and data transfer between nonadjacent PEs
requires a number of steps which are given by the number of PEs included in
the connecting path between transmitter and receiver; in fact, exchanges take
place only by adjacency (up to now only the CM 9 deviates from this). When
the system uses the gating technique, data exchanges between distant PEs are
implemented by iteratively applying the previous neighboring operation.

A basic feature available only with the gating technique is the capacity to
apply an NN operation in recursive mode: the resulting Z register of Eq. (5.1)
belongs to the set X of the input registers and is precisely that broadcasted to
NNs. The operation is maintained until a stable state is reached. This feature
is often called "propagation, "10, II because one of the most important applica­
tions is to identify a complete segment propagating the signal from seed(s)
within the connected component by adjacency.

This feature has been implemented in different ways; a common case is

Z~+l = <I>(Xo, <j [gi n Zm (5.2)
ieNN

where g is the gating vector, superscripts give the neighboring position (adopt­
ing the convention of Figure 5.4), subscripts express the recursion's step, and
<j represents the NN function.

The basic operation of propagation is given by

z~+l=xon(uZD (5.3)
i.NN

www.manaraa.com

Compact and Distributed Pyramids

~9rig7/
/12/11/

/13/10/
Figure 5.4. Complete hierarchical near-neighborhood labeling convention.

123

which is easily derived from Eq. (5.2). This operation allows us to consider
the connected component as the atomic data for the investigations.

c. Implementations in Actual Systems. Of the four systems under analysis,
PAPIA 1 and PCLIP adopt a complete gating approach; however, they exhibit
some differences in that PAPIA 1 PE has special circuitry devoted to the imple­
mentation of the NN function, which is distinct from the processing unit, while
HCL compresses these two units into a single facility called the matching unit.
GAM, which is based on the chip designed for MPP, inherits the multiplexing
approach of that system and extends it to handle vertical communications as
well. SPHINX also uses the multiplexing solution for intralevel communica­
tion, while it adopts a mail box register approach for interlevel data move­
ments. Details and comparisons of these different implementations will be dis­
cussed later.

In reference to the class of operations which involves multibit data trans­
fer, multiplexed and gated NN access are perfectly equal, since no parallel
access is possible in either case. On the whole, architectures provided with
gated NN access exhibit a higher flexibility; however, in the domain of multi­
resolution processing, where algorithms exploit at least integer arithmetic, the
advantage tends to be less evident.

5.2.2.2. Working Storage Organization

The storage resources accessible to the processing unit of the PE include
registers, local memory, and external memory, if any.

While all the architectures analyzed here are provided with a few Boolean

www.manaraa.com

124 Chapter 5

registers to hold input and output operands, only two, PAPIA 1 and GAM,
contain variable-length shift registers (2 and I respectively). They allow in­
creased throughput in those operations, such as convolutions, in which partial
results can be recirculated through the processing unit. The advantage over
other architectures is relevant if the access time to local or external memory
becomes the dominant factor in processing time.

The local or external memory available in these systems provides, per PE,
256 bits in SPHINX (local, and 8 kbits external), I kbit in PAPIA I (external),
and 8 kbits in PCLIP and GAM (both external). To ease system design, mem­
ory is static. As for memory access, these architectures are based on one-ad­
dress instruction formats, where the address construction is performed by the
machine controller. The SPHINX system is an exception, since the PE executes
three-address instructions; to prevent excessive number of I/O pins to transmit
those addresses, the PE contains a set of autoincrementing-autodecrementing
pointers.

5.2.2.3. Arithmetic and Logical Unit Structure

Boolean and arithmetic capabilities are features of the ALU units in all
systems. They are designed to handle bit-serial processing and therefore are
based on extremely simple circuits. A full adder is all that is required to per­
form two's complement serial arithmetic. Actually, PAPIA 1 and SPHINX are
equipped with a unit which integrates both Boolean operations and arithmetic
ones, while a minimal support is added for comparison and multiplication.
GAM architecture uses, as mentioned above, the massively parallel processor
(MPP) PE that separates the Boolean processor from the full adder. A unique
design is that of PCLIP, whose processing capabilities are based on a single
circuitry, the matching unit. It computes the logical AND (OR) between one
of the local registers and the subset of the complete neighborhood of each PE
that matches a "pattern," specified in terms of 1 (the neighbor value is used),
o (the neighbor value is discarded), or D (don't care condition; the neighbor
value can be either 0 or 1).

In PAPIA 1 and GAM the availability of the shift registers, previously
described as working storage, increases the processing capabilities and allows
us to tune the structure of the PE to gray-level resolution in bits/per pixel of
the image.

5.2.2.4. Local Control

Execution flow in fine-grained parallel systems is dictated by an external
control unit, which holds the program to be executed and broadcasts it to all

www.manaraa.com

Compact and Distributed Pyramids 125

the PEs. As elements of a SIMD system the PEs have limited local autonomy;
Lf' 12 identifies three types of autonomy, one for each of the three basic com­
ponents of the PE structure shown in Figure 5. 1.

• Operation autonomy. Truly autonomous PEs could execute different
instructions, but they would also require local program storage and a local
instruction decoding unit. This contradicts the trend of integrating an ever­
larger number of PEs onto a single chip. The common trade-off is the inclusion
of a special Boolean register, which holds an activity bit in the PE structure.
According to the status of this register, PEs are subdivided into two sets: en­
abled PEs, which execute the current instruction, and disabled ones, which stay
idle. Sometimes a somewhat more powerful model is proposedl3 : the activity
bit conditions the execution of the currently broadcast instruction and causes
one of two complementary operations to be carried out, such as additions ver­
sus subtractions, logical AND versus logical OR, etc.

• Address autonomy. Each PE accesses its own local memory using a
private address. This is usually implemented with an offset mechanism, in
which the broadcast address, common to all PEs, is modified by local data. Of
the four systems discussed, the only one which exploits this feature is
SPHINX.

• Connection autonomy. Each PE processes a different subset of its
neighbors which is chosen among a few possible patterns according to the sta­
tus of a local connectivity register. This feature is not implemented in any of
the four pyramid systems mentioned. A limited implementation of this in a
massively parallel, fiat, fine-grained system can be found in YUPPIE,7 where
the connectivity register is binary and where the two possible patterns must
satisfy certain constraints.

A last feature of the PE structure which contributes to the control strategy
is the status register. This single-bit storage element is used to produce a global
signal for the controller. Details on how to generate and use this global signal
follow in Section 5.2.3. The data produced by each PE for such a function are
static in three of the systems considered. Only PAPIA 1 PE is also capable of
outputting a status change signal specifying whether the last instruction exe­
cuted has modified the status register.

5.2.3 System Configuration

The systems analyzed here share a number of very peculiar features which
distinguish them from general-purpose, coarse-grained systems. First, the hier­
archical topology involves a complex management of multilevel operative

www.manaraa.com

126

Image If 0 1/'-------.........
~;~~~~e "'"--------./ ...",.,0::--.......... -'

HOST

Main
Controller

Controller(s)

-0-

Feature
Extractor

Chapter 5

Figure 5.5. Block diagram of a general
compact pyramid system. Only component
units peculiar to this system are drawn;
meanwhile auxiliary components such as
standard image 110 subsystems are not in­
cluded.

units; second, the serial structure of the PEs means that the raw elementary
data is actually the bit plane, while the standard way of handling images is
pixel oriented; third, all currently fabricated, or even designed, systems present
a mismatch between the base array of PEs and the standard image size. Further­
more, any application requires both scalar and massively parallel operations,
which obviously means using separate units. Finally, a global feedback to the
controller is needed to operate on the image content at higher levels of abstrac­
tion. These peculiarities lead to a composite system structure; an overall block
diagram of a general compact pyramid system is given in Figure 5.5.

5.2.3.1. The Controller

A key unit of the system is the controller, whose main functions are
multitasking needed to manage the multilayer structure; distinguishing the par­
allel code from the scalar one, generating the pyramid code; handling of the
global feedback coming from the pyramid array; and host interfacing or, for
stand-alone machines, complete operating system support.

PAPIA I and SPHINX systems have operation autonomy at plane level;
i.e., all layers can simultaneously execute different tasks, and the controller is
in charge of the resulting Multi-SIMD modality. Details of the strategies used
in these systems to manage tasks interaction are discussed in Chapter 9.

Code generation for the pyramid unit is a heavy burden for the controller
who receives pixel-oriented macroinstructions from the host, handles the scalar
code, and expands each parallel macroinstruction into the proper sequence of
bit-oriented nanoinstructions to be broadcast to the pyramid PEs. A simple
example is the sum of two images at a given resolution level: this single macro­
instruction is expanded into a number of one-bit elementary additions as re-

www.manaraa.com

Compact and Distributed Pyramids 127

quired by the bit length of the pixel. For these reasons a high-speed micropro­
grammed control unit is usually required.

An important feature of the control strategy in such systems is the han­
dling of branching in the program flow managed by the controller. To obtain
such a capability it is necessary for a single global status to be extracted from
the parallel unit; most systems, particularly those studied here, are equipped
with circuitry, named global OR, whose function is to build the logical summa­
tion of the contents of all the status registers of the PEs. This result can be
used by the controller to make tests. PAPIA 1 can output the logical OR of a
bit which is set in each PE if the last instruction has changed the status register:
this allows for an easier implementation of the propagation function described
in Section 5.2.2.1b). Besides these global tests, a special circuitry is introduced
in some systems (e.g., GAM) to compute and deliver regional and global fea­
tures to the controller, such as pixels counting, local arithmetics, etc.

In most cases the pyramid is considered as an attached processor and the
controller is the natural host interface. A self-host configuration is seldom used
to produce stand-alone systems; in these cases the controller takes on all the
functions of the host, including peripheral and storage management.

5.2.3.2. The Active Memory

The image input-output management takes care of the following: mis­
match between base array PE size and data size; transformation of the data
from byte to bit-plane formats; image windowing and region of interest extrac­
tion; and effective bit planes loading and unloading.

Until today, the systems built or designed even in their largest configura­
tion have a 128 x 128 base; this size, even if remarkable, is smaller by one
order of magnitude than the usual image size. Image operations are imple­
mented by sequences of block operations; it is up to the active memory unit to
tackle this problem, which obviously reduces system performance. The practi­
cal solution to this problem is cumbersome, especially for local operations in
which border effects ensue; these effects are not a priori limited in space if the
local operations are executed recursively. Nevertheless, the mapping of the
image on the base can be transparent to the users, thereby creating a virtual
PE environment.

The basic function of the active memory is changing the format from the
pixel environment of acquisition, monitoring, and storing subsystems to the bit­
plane environment of the pyramid PEs. This trivial operation is crucial for
system performance and alone justifies the active memory unit; sometimes this

www.manaraa.com

128 Chapter 5

operation has been implemented in ad hoc silicon chips (e.g., the comer tum
buffer from the GAPP flat-array PEs).

In some implementations the active memory can read out the block to be
fed to the pyramid base starting from an arbitrary location within the image
(dynamic windowing). With the addition of a small amount of hardware the
read-out address generation can be driven by a scanning step which is larger
than unity; in this way, the input image can be arbitrarily subsampled. Combin­
ing the windowing effect and the subsampling features, the bit plane B(i,})
transmitted to the pyramid base is

B(i ,j) = l'(xo + ki; Yo + kj) Vi,j l::5i,j::5L (5.4)

where I is the image stored in the active memory, r is the bit position, k is the
sampling step, L is the linear size of the pyramid base, and (xo,yo) are the
coordinates of the reference comer of the chosen window.

Moreover, in each PE, at least three of these systems foresee the presence
of a special Boolean register for bit-plane image 110. They are arranged in the
form of unidirectional, distributed shift registers along one of the dimensions
of the base array of the pyramid. In this way loading and unloading of images
is performed with column (or row) parallelism and can, at least in principle,
be concurrent with other processing activities in the pyramid. Nevertheless, the
image input-output still remains a bottleneck for compact systems. 14

5.2.3.3. The Host Computer

Very specialized parallel processors, such as the pyramid machines con­
sidered here, cannot efficiently support a complete, flexible, and efficient user
programming environment. The controller, which is burdened with the heavy
chores of feeding the pyramid nanoinstruction stream, managing interlevel data
synchronization, handling the global array feature, and other scalar duties, usu­
ally does not have enough resources to serve as a developing machine. There­
fore, it is the host computer, usually a conventional serial processor, that sup­
ports applications development: specially tuned compilers for high-level
languages, debugging tools, and visualization and simulation environments.
These are the software platforms that transform the high-speed parallel pyramid
unit into an effective, real-life, application-solving machine.

In addition to software development, the host interfaces the active memory
and the controller with standard peripherals (high-capacity and high-speed
disks, TV cameras, monitors, etc.), usually by means of a high-speed vision
bus.

www.manaraa.com

Compact and Distributed Pyramids 129

5.2.4. Compact Pyramid Prototypes

In the followmg, each of the four projects WhICh have been introduced as
representative of the compact pyramid family WIll be described in detail. The
description focuses on the peculiaritles of each system, WhICh are compared
only on a qualitative basIs. A quantitative companson based on real bench­
marks is not possible because these machmes at most reached the prototype
stage and never became fully sized systems.

5.2.4.1. The PAPIA 1 System

The PAPIA 1 (pyramIdal architecture for parallel image analysIs)2. 15. 16

is a common research project of a group of Italian universIties begun in 1983,
which reached the stage of a fully functiomng prototype. This system belongs
to the famlly of "compact" quad pyramids shown in Figure 3.14. The novel
feature of the PAPIA system lies 10 the three-dimensional topology of the net­
work of PEs included 10 the chip. In fact, it is based on a chip with five PEs
(see Figure 5.6), which make up the basIc two-level pyramid and WhICh is the
building block used to assemble larger pyramids.

PAPIA has a rather powerful PE (see Figure 5.7), since It IS provided with
two shift registers with programmable length and a complete arithmetic logic
unit (ALU), and is therefore capable of implementing convolutions with kernels
of arbitrary dimensions without having to save the mtermediate results in the
local memory. The main characteristics which define the performance of the
machine are summanzed below.

Figure 5.6. The PAPIA 1 elementary two-level pyramId of five PEs contamed m a chip which
constitutes the module for assembling the larger pyramId

www.manaraa.com

130

From
nelgllbors

Vertical output

'JOmemory

Chapter 5

~memmy------~~ ~-----r~~~--+-----------~

o ~ Storage element

TO next
PE

o -t-fultiplexer

Figure 5.7. Block diagram of a PE of the PAPIA I pyramid. The two variable-length shift
registers SrI and Sr2 increase the PEs processing capabilities in arithmetic window operations.

a. Interconnection Topology. The physical pyramid provides for direct ac­
cess to intra- and infraplane neighbors and is a quad pyramid; each processor
is directly connected to four children in the plane immediately below. The
two modes of connection have been implemented in a disjointed manner: each
processor can exchange data with its plane neighbors and with those on adja­
cent planes at different times. Two operative modes have thus been introduced
even while maintaining homogeneity in the connections. These connections are
the "horizontal" mode for exchanges between brothers, and the "vertical" one
for communication between planes. This two-mode configuration was arrived
at after observing that most algorithms which take advantage of multiresolution
techniques operate in the two modes (vertical and horizontal) at separate times.

Communication between nonadjacent processors Communication be­
tween distant processors in fine-grained machines is difficult, since it has to be
accomplished by adjacency via various intermediate steps. A second clock,
which drives the transmission of data between one of the Boolean registers of
the PE, was introduced in PAPIA in order to make these transfers quicker.
Within certain limits, this allows the implementation of shift registers, with

www.manaraa.com

Compact and Distributed Pyramids 131

variable topology, within the pyramid. This clock does not involve the ALU,
and its frequency is a multiple of the frequency of the basic clock.

b. Processor Capabilities
Near-neighbor operations. A block diagram of the PE architecture is

shown in Figure 5.7. Connectivity is 4 on the plane and is implemented with a
broadcasting-gating solution: each processor distributes its own bit of informa­
tion in parallel to its immediate neighbors. Data acquisition is via a gating
circuitry (NN GATE in Figure 5.7) which collects the data coming from neigh­
bors, with an equal enabling vector for every processor on the plane. The en­
abling vector is specified as part of the instruction code broadcasted to all PEs
on a plane. In this way, each PE receives a signal which is the logical combina­
tion of the data transmitted by a subset of neighbors selected via the enabling
vector. The logical functions carried out on the immediate neighbors are AND,
OR, NAND, NOR.

Parallel access to immediate neighbors on the basis of a logical combina­
tion allows the recursive operative mode which is very efficient in the treatment
of binary images. As described in Section 5.2.2.1 b, by using the instructions
in recursive mode it is possible to consider the connected components of an
image, rather than the single pixel, as "atomic" data.

Memory organization. Two types of local memory are available: an on­
chip serial access memory which constitutes the two shift registers for a total
amount of 64 bits; and an off-chip random access memory which is 1 kbit per
PE in the prototype. The external memory introduces some complexity to writ­
ing because chip operation is controlled by a single instruction, while the PEs
can be individually masked off. Hence, external storage associated with a chip
must be managed in one of two ways: (a) either with a read-modify-store
cycle, in order to cope with the individual status of the PEs; (b) or with a write
enable signal generated for each PE in the chip. The first solution, although
more attractive in terms of pin count and board design, introduces a certain
amount of complexity in the phasing of instruction execution, and therefore the
second solution has been preferred.

The ALU. The ALU is made up of a serial adder, a serial comparator, and
the circuitry that implements the NOT, AND, OR, and XOR logical opera­
tions. A carry register C, which is invisible from the outside, is considered part
of the ALU.

The ALU is fed by two shift registers (Sri and Sr2), which are used to
contain the data and the partial results in all the arithmetical and comparative
operations. In the second type of operation, the third input from register A
carries the partial result from the previous bit-serial comparison. As shown in

www.manaraa.com

132 Chapter 5

Figure 5.7, register Sr 1 provides both normal and complemented output. The
connections between the ALU, the interconnection to neighbors' logic, and the
shift registers allow the execution of convolution operations with a kernel of
arbitrary size without requiring that the partial results be saved in the local
memory. An important characteristic of these registers is that they can be pro­
grammed in length with appropriate instruction. This simplifies the manage­
ment of arithmetic-logic operations with a nonstandard number of bits per
pixel. Moreover, the processor has been designed to simplify the serial imple­
mentation of multiplication, which is a basic step in convolution, by means of
the logic unit F and because of the capability of the shift registers to rotate. In
fact, unit F either acts as a multiplexer or it computes the AND between regis­
ter B and the output from Sri.

As well as the C register, two other single-bit registers have been intro­
duced (A and B); their function is to accumulate the data and results of the
logical operations or to be used as a support for arithmetical operations. All in
all, the processing element is much more powerful than is the norm for fine­
grained systems. A thorough analysis of the principles underlining the construc­
tion of such systems can be found in Fountain. 17

Global sensors and recursivity. Each PE has an output line (~ out); the
lines emerging from the PEs which are on the same plane gather the state bit
of each enabled PE (the A register) and are OR-ed together so as to collect
information on the processing state of a plane of PEs. More precisely, it is
possible to send either the content of register A or the difference (XOR) be­
tween its present content and past content on this output line. The first method
allows an external controller to test for a global condition (i.e., all 0' s or all
1 's) in order to implement branching. The second method allows us to test
whether there have been changes after the last instruction executed; this infor­
mation permits the recursive application of the same instruction until a stable
configuration is reached.

Operations of local and global propagation may be implemented by com­
bining the technique of access to neighbors described above with this sensor:
in the first case the result given by each processor is a function of the pixel
contained in the local memory and that of the pixels contained in the selected
adjacent processors (this type of instruction becomes useful in translations and
in the search for particular templates in the 3 X 3 neighborhood of each pixel
when implementing operators of mathematical morphology); in the second case
the local propagation instruction is applied recursively, and the operation is
ended only when propagation in the whole connected component is complete.

The instruction set. The 12 bits of the instruction code have been ar­
ranged into eight instruction classes (namely, memory access, shift register

www.manaraa.com

Compact and Distributed Pyramids 133

~l ~O I:g ts h, ta \ ~ ~ ~ ~ ib

I 0 11 1V/3 cI> I ~ I ~ I ~ I ~ I ~ I ~ I
.. 4 ..
OP Code Conn ALU op Gating op Gating vector

Conn (V/H): connectivity bit (bg=O: horizonta~ bg= 1: vertical)

ALU oQ {<t;) Gating oQ (iT) Gating vector encoding

00 and 00 or gl N Sibling NE child
01 or 01 nand g2 E sibling SE child
11 xor 11 and g3 S sibling SW child
10 not 10 nor ~ Wsibling NW child

g5 - P parent
bg=O bg=1

Figure 5.S. PAPIA I near-neighbor instruction format. The operation of the ALU and of the
gating unit are detailed.

management, Boolean register management, arithmetic, logic, chip configura­
tion, inter-PE movements, near-neighborhood logical); all in all, 58 operations
are available. The arithmetic and logic operations are similar to analogous sets
in other fine-grained parallel processors. In this case, however, direct support
for bit-serial multiplication and comparison is provided. Memory operations
can be used against registers A, B, the shift registers, the masking register, and
the 110 distributed shift register.

The chip configuration class includes operations to set the length of the
shift registers and to enable-disable either or both of the two planes contained
in a chip. This latter feature allows time-multiplexed execution of different
instruction streams at each level of the pyramid.

Inter-PE movements is a set of operations devoted to quick near-neighbor
data transfer. Data movement between PEs is synchronized by the second clock
of the system. To ensure better performance, only the NN gating circuitry and
the Boolean registers involved in the transfer are active during the operation.

The format of the near-neighbor operations is depicted in Figure 5.8. Bits
11 and 10 identify the class. The operations come about by combining four
gating functions;r (bits 6-5) with the three Boolean operations <t> (bits 8-7)
carried out by the ALU and adding NOT, which actually does not use the
outcome of the gating unit. The decoding of the gating vector (bits 4-0) is
conditioned by the mode specified by connectivity bit 9, which establishes ei­
ther vertical (V) or horizontal processing (H). A near-neighbor operation in-

www.manaraa.com

134 Chapter 5

volves three registers in the PE: the status register A, which is the source and
destination of the operation; the masking register M, which locally conditions
the execution; and the propagation register B. As already anticipated, the near­
neighbor operations come in two modes: local (nonpropagating) and recursive
(propagating). Both execute as follows:

PE masked (Mo = 0): A? + 1 = A? (data hold)

PE active (0) 0 _ <I> { 0 [0 (or 5 i i)]} M = 1: At + 1 - At, B n v i = 1 gnAt
(5.5)

where superscripts refer to the neighboring positions, according to the encoding
shown in Figure 5.8, with the further convention that 0 stands for the PE itself;
subscripts refer to the execution step; <I> and rzr respectively denote ALU and
gating circuitry operations. Equation (5.5) is the PAPIA 1 implementation of
the general recursive NN operation of Eq. (5.2). The difference between local
and recursive modes is in the number of execution steps: in the fonner, it is
always 1, while in the latter it is data dependent, as established by the outcome
of the global sensor. As an example of this mode, let us consider the connected
component problem: an image, stored in register B, consists of more than one
disconnected region; a single dot image (one pixel, the so-called seed, set to 1
and the others set to 0) identifies the component to be extracted and is stored
in register A. The recursive execution of the following near-neighbor operation

Hor OR OR w s E N
OP Code Conn ALU op Gating op Gating vector

(5.6)

propagates the seed (image A) by successive enlargements to cover the whole
region of image B it initially identifies. The tenninating condition of the re­
cursion is

(5.7)

and is detected by the external controller through the appropriate OR-Iout cir­
cuitry signals over the whole plane.

Local control. Of the three types of autonomy possible in fine-grained
systems, PAPIA 1 supports operation autonomy only. Two levels of operation

www.manaraa.com

Compact and Distributed Pyramids 135

autonomy have been introduced: a global, plane-level control and a local, proc­
essor-level control.

The first level pennits parallel execution in the SIMD mode on a subset
of arbitrary planes. Therefore operative modes are pennitted which vary from
SIMD over the whole pyramid to Multi-SIMD with as many processes as there
are couples of planes.

The PE level, which is hierarchically dependent on the plane level, con­
trols the individual processors. It pennits the selection of arbitrary subsets of
processors (within a plane or enabled planes) by loading appropriate enabling
images into the M registers directly from the local memory or even using the
partial results of a process.

c. System Configuration
Hardware system architecture. The basic hardware blocks of the first

PAPIA system prototype, shown in Figure 5.9, are (i) a host computer (a SUN
workstation); (ii) a controller 21 composed of a dedicated microprogrammed
pyramid control unit (peU) and a small general-purpose single-board computer
(SBC); (iii) an image 110 subsystem containing a frame grabber and an active
memory; (iv) the pyramid of the PEs.

The system is designed for a maximum configuration of eight levels and
therefore has 128 x 128 processors at maximum resolution, i.e., at the pyramid
base. In tenns of chips, such a system would require 64 x 64 chips to assemble

Cameras & Monitors PAPIA PYRAMID CONTROlLER

1/ 0 SUBSYSTEM

HOST WORKSTATION

AT BUS

Figure 5.9. General view of the PAPIA 1 system. A mixed environment was used in this first
prototype: the 110 subsystem is based on an AT bus, while the controller bus is VME.

www.manaraa.com

136 Chapter 5

levels 7 (128 X 128 PEs) and 6 (64 x 64 PEs); 16 x 16 chips to assemble levels
5 (32 x 32 PEs) and 4 (16 x 16 PEs); 4 x 4 chips for levels 3 (16 x 16 PEs) and
2 (4 x 4 PEs); and a last chip for levels 1 (2 x 2 PEs) and 0, the apex (con­
taining a single PE). Thus, a total of 4367 chips is required for a system of
that size.

The chip packaging, design methodology, and technology used in the proj­
ect were those offered in 1987 by the silicon foundry (SGS/Thomson) as part
of a nationwide multiproject chip program for universities. The design method­
ology used was a semicustom approach based on gate arrays. The libraries are
based on a CMOS, 3 p,m, double-metal process.

Analysis of chip complexity in terms of silicon exploitation gives an in­
sight into the motivation for the choice of architecture. The PAPIA IC as a
whole has a complexity of 17,000 transistors. The shift registers account for
over 60% of the entire gate utilization. This is due to their considerable length
(32 stages) and to the multiplexing logic applied to make them variable in
length. Such a percentage of gates in the design is justified by the key role
played by the shift registers which allow the circulation of partial results during
arithmetic operations in local neighborhood processing. Since fine-grained ar­
chitectures are generally best suited for low-level tasks, which rely heavily on
near-neighborhood computations, the trade-off between cost and benefits can
be justified.

A second, less evident aspect of the design is the effectiveness of Boolean,
near-neighbor processing as carried out by the gating circuitry of the PEs data
path. Both at PE and chip levels, such capability is obtained at a low cost,
which in terms of equivalent gates does not exceed 4%. Since gated access to
neighbor status allows the recursive processing and propagation which are qual­
ifying features of the architecture, one can see that a crucial function in the
system is obtained at a very low cost.

Pyramid prototype. The working prototype of the system is a four-level
pyramid; thus, the base array consists of an 8 X 8 mesh of PEs. The 17 chips,
which contain the 85 PEs, are allocated to five boards. The boards share the
same layout and can accommodate a maximum of four chips; therefore, the
one associated with the two uppermost levels of the pyramid only contains a
single chip. The local memory of the PEs is obtained by a set of 20 l-kbit
memory chips per board; support circuitry for memory management and drivers
for high-fan-out wires complete the layout of these boards. A sixth board also
exists that allows for the reconfiguration of the base of the pyramid, as far as
edge connectivity is concerned. Three possibilities exist: with the first, the
edges of the base array are set to a constant binary value, which is used in
near-neighborhood operations performed by PEs on the periphery of the array;

www.manaraa.com

Compact and Distributed Pyramids 137

the second one is the "wrap-around" configuration, through which
North-South and East-West connections are established at the edges; the third
option transforms the mesh of the base into a linear array by connecting the
last PE of each row with the first one of the next row.

Loading and unloading of images. Image 110 is a bottleneck for all fine­
grained machines: they all therefore require ad hoc hardware for the construc­
tion of bit planes from the images that are acquired in the form of a string
of bytes.

In PAPIA an 110 register was inserted in every PE to allow the loading
and the unloading of the images without interrupting task execution in the pyra­
mid of PEs. The setup of these registers along the line is such that they make
up an independent shift register driven by an external clock. The image is thus
introduced by presenting the columns in sequence, bit plane by bit plane, and
by making the shift register, whose length is equal to the length of the line,
correspond to the row of the bit plane. In this way the image is loaded (and
similarly unloaded) by making it shift with a new column for every clock cycle.
It is then loaded altogether in the local memory once the pixels of the first
column have crossed the whole image.

An external memory system called the active memory (AM) manages the
transfer of the images through the 110 registers of the different PEs at the base
plane of the pyramid.

The 110 subsystem was hosted, in the first prototype, by an AT personal
computer. While the frame grabber is a commercially available board, the im­
age reformatting unit, called active memory, was designed within the frame­
work of this project. The functions carried out by the AM are transferring a
window of the image stored in the frame grabber into its private storage and
transmitting or receiving a bit plane of such a window to or from the pyramid
110 registers in column wide format. The former procedure is initiated upon
reception of a control word from the pev, which sets the position and the
dimension of the window to be transferred. Further synchronization allows the
AM to start input-output operations with the base of the pyramid. The two
activities can proceed in parallel. Moreover, the private storage of the AM is
double ported, so concurrent transfer of bit planes to and from the pyramid
is possible.

The controller. The control system of the PAPIA 1 is organized on three
different levels: the microprogrammed unit pev, the SBe, and the host. In­
structions are broadcast to the pyramid by the pev. All PEs in the same pyra­
mid plane receive the same instruction at the same time. The pev is directly
connected to the pyramid of processors via dedicated, special-purpose links.
The pev is the custom-made, hardware controller of the pyramid; it holds the

www.manaraa.com

138 Chapter 5

program to be executed in the pyramid and generates all synchronization sig­
nals necessary both to the pyramid and to the I/O subsystem for image loading
and unloading. It is built around a microsequencer, which drives a set of regis­
ters together with the microprogram storage. Each word of the control memory
(80 bits) holds, among other control bits, the 12-bit op code to be sent to the
pyramid. An extended set of microprogrammed pyramid routines is stored in
the PCU memory as microsubroutines, accessible through short op codes from
the SBC. While the interfaces to and from the pyramid are in the form of
parallel ports, those to and from the SBC are FIFO queues, for better
throughput and synchronization.

The SBC is interfaced with the PCU and with the Versabus Module Eu­
rope (VME)-based host. This second unit is a MC68000 SBC. It is in charge
of the overall system synchronization and the execution of the scalar code of
the applications. Indeed, even if the pyramid parallel unit is the target of most
of the code, control structures embedded in the algorithms, such as selection
and recursion, require the flexibility of a standard von Neumann machine. It is
in such operations that the pyramid global sensor signal is used as feedback.

This description refers to the stated prototype; nevertheless the system is
Multi-SIMD, and is capable of supporting multiple-instruction sequences on
disjoint layers of the pyramid as long as different controllers are available to
drive them. However, since every chip contains PEs of two adjacent planes
and has just one instruction bus, only two planes sharing the same chips can
execute the same instruction. Different couples of planes can simultaneously
receive different instructions. When the pyramid operates in a vertical mode,
the mode is SIMD over the whole pyramid due to the need to synchronize
vertical transmissions.

Software environment. PAPIA has a multilevel programming environ­
ment, so writing and debugging programs is possible under varying degrees of
difficulty and, correspondingly, of program efficiency.

The first level,18 which allows for the complete visibility of pyramid archi­
tecture and its instruction set, involves programming the pyramid through mi­
croprogram development for the microprogrammed pyramid control unit
(PCU). By microprogramming the PCU, the user can directly program and
control the pyramid instruction stream sent by the PCU to the pyramid itself.
A library of basic function modules (standard fixed and floating-point arithme­
tics, basic movement operations, local memory management, recursive binary
and gray level near-neighbor operations, digital transforms, basic image pro­
cessing modules, etc.) has been developed in this environment.

The second level consists of macroprogramming l9 the pyramid by means
of the SBC. A set of functions (i.e., of pyramid instructions) is statically

www.manaraa.com

Compact and Distributed Pyramids 139

loaded on the PCU, and the user develops programs for the SBC that activate
these functions. This macroprogram development environment for the SBC is
based upon an ad hoc macroassembler (PMACRO). As higher-level tools,
moreover, a set of filters and procedures have been implemented that allow the
writing of C programs for the SBC that contain macroassembly parts for the
pyramid. Programs are written and complied on the host computer and are then
loaded and executed on the SBC. The environment is completed with a simula­
tor of the pyramid and of the PCU, which runs on the host computer and
accepts PMACRO programs.

In comparison to the previous one, this environment allows for easier pro­
gram debugging, particularly when complex macro functions for the pyramid
are adopted as program building blocks, instead of functions composed of sin­
gle instructions from the pyramid itself. On the other hand, lower system per­
formance may results, because of the communication overhead between the
SBC and PCU.

The third and highest level of programming is based upon PCL (Pyramid­
C-Language2o), a medium-level language designed to allow users to solve vi­
sion problems on pyramid machines. It is an extension of the C language,
where parallel instructions and hierarchical data structures are included. Parallel
data types have been introduced to represent basic pictorial objects and subsets
of the pyramid array along with mechanisms for controlling concurrence. The
PCL compiler is designed as a two-stage compiler: the first stage is a precom­
piler that translates a PCL source code into PMACRO code. The second stage
allows us to separate the sequential components of the algorithms from the
parallel ones and produces the executable code for the SBC linked to all the
functions microprogrammed by the peD. Details of this language will be given
in Chapter 9.

5.2.4.2. The HCL Pyramid Prototype Machine

One of the first proposals for a compact pyramid architecture is the PCLIP
system (pyramid cellular logic image processor)21-23 developed by Tanimoto
et al. at the University of Washington. The plan of this machine incorporates
a set of cellular logic operators (CLOs) based on the quad-pyramid topology,
as primitives of a pyramidal algebra of images called hierarchical cellular logic
(HCL).24 The machine is tailored for the implementation of these operators.
The compact pyramid of PEs works in SIMD mode under the supervision of a
single controller.

a. Interconnection Topology. The PCLIP is the only quad-pyramid project
supporting the 8-connectivity on each plane in the hardware; i.e., the neighbor-

www.manaraa.com

140 Chapter 5

hood of a processor consists of 13 cells (see Figure 5.4): eight belong to the
same level (lateral neighbors); five are hierarchical neighbors-that is, one lo­
cated in the level above (parent) and four in the level below (children). With
respect to the PAPIA design, in this case no distinction exists in accessing
lateral or hierarchical neighbors; that is, parallel access to 13 cells is supported
in the hardware to implement the CLOs.

In the prototype the chip integrates 4 X 4 lateral neighbors. In order to
simplify the off-chip interconnections, the execution of the CLOs is decom­
posed into two phases, which allow us to precompute the partial CLO for the
children and to complete it with the lateral and local cells. Details on these
operations will be given subsequently.

b. Processor Capabilities. A block diagram of the PE architecture is
shown in Figure 5.10. The architecture of the cellular processor is very simple.
It consists of three single-bit registers, named P ("propagation"), L ("local"),
and C ("condition"), and of matching circuitry to analyze any subset of the
complete hierarchical neighborhood of a PE ("matching operation"). The P
register contains the home data to be broadcast to the 13 near neighbors. The
L register supports the dyadic operations. The C register is the enable register.

Near-neighbor operations. A unique feature of this architecture is that,
except for setting and resetting of registers and for off-chip memory accesses,
the only operation carried out is the CLO matching operation, in the AND_
Match and OR-Match forms described in the following. The operations in­
volve two operands: the first (EN) is the extended neighborhood which consists
of the P registers of the processor itself and of its 13 neighboring processors
plus the data stored in the local register L. The second operand (MP) is a
pattern broadcast from the controller which describes the local structuring ele­
ment: each of the 15 extended neighborhood values is in ordered correspon­
dence with one digit in the pattern specifying the 0 or 1 or D (don't care
condition) value. The definition of the AND~atch operator is

14

AND_Match = n (MP, .:. EN.)
i=O

(5.8)

where MP, .:. EN, is equal to 1 if MP,=EN, or MP,=D; otherwise it is 0 (the
extended neighborhood labeling convention is the one shown in Figure 5.4,
with the home data labeled, respectively, 0 for register P and 14 for register
L). That is, the result is 1 if each and every element of the pattern matches its
associated element in the extended neighborhood, or it is 0 when at least one

www.manaraa.com

Compact and Distributed Pyramids 141

element does not match. This operator is equivalent to the "hit-or-miss" opera­
tor of mathematical morphology, 25 in which the two disjoint components of the
structuring element are a subset of EN and the remaining points of EN are
associated with D.

The definition of the OR-Match operator is

14

OR-Match = U (MPi + EN)
i=O

(5.9)

where MPi + EN, is equal to 1 if MPi= ENi and MPi,eD; otherwise it is O.
That is, the result is 1 if at least one element of the pattern different from D
matches its associated element in the extended neighborhood. It is 0 when no
element matches.

The two Match operations are the PCLIP machine primitives. Arithmetic,
logical, and data movement operations must be implemented through them. For
example, shifting a bit plane, stored in the propagation registers, by one posi­
tion can be achieved with one of the following operations:

ShiftWest(P) = AND_Match(DlDDDDDDDDDDDDD, P) (5.10)
ShiftWest(P) = OR-Match(DlDDDDDDDDDDDDD, P) (5.11)

The digit set to 1 in the pattern corresponds to the eastern neighbor according
to Figure 5.4; its value is copied in the home register P, with the remaining
data in the neighborhood masked off by the "don't care" conditions.

Memory organization. An off-chip static random access memory, 8 kbit
per PE, is available in the prototype. This memory is physically wired to the
vertical transmission line to the children and is driven by an appropriate tristate
logic. The whole base-level memory is shared with the host computer;
the arbitration criterion is based on a nonpreemptive priority mechanism
which favors the host CPU. Moreover, during the system configuration phase
two bit planes of the base memory are set to the constant values 0 and 1,
respectively, and are used to feed the base with the dummy values needed for
the matching operations.

The condition register C cannot mask memory operations, so selective
writing must be implemented with a read-modify-store cycle.

Arithmetic and logical operations. These operations are executed on data
stored in registers Land P. In particular, AND, OR, and NOT operators are a
subset of the matching operations, and the other two input Boolean functions
can be implemented on the basis of these two primitives.

www.manaraa.com

142 Chapter 5

Multibit operations are implemented with the two basic primitives as well;
they require, in general, several cycles per bit: in fact, the hardware available
is confined to a two-input, single-output matching circuitry. For example, add­
ing two single-byte data requires 226 machine cycles26: for each bit two XOR,
two AND, and one OR operations are needed, plus a number of intermediate
results storing and loading operations, giving a total of 28 cycles.

Local control and instruction set. The only local autonomy introduced is
the operation autonomy as supplied by the one-bit C register.

The 18-bit instruction set of the PCLIP is extremely simple, and, besides
the matching instructions, consists of the SET and CLEAR operations and
LOAD and STORE operations. Both of these groups act on the three single-bit
registers P, L, and C.

The unconditioned STORE operation produces as a second result the OR­
of-all signal (see Figure 5.10) which at chip level collects the inclusive OR of
the 16 registers involved in the operation. This signal is used to build a global
feedback for the controller and can be exploited for testing, for branching, and
in the implementation of recursive operations to reveal whether a stable status
has been reached in the array.

c. System Configuration
Hardware system architecture. The basic hardware blocks of the PCLIP

system prototype are shown in Figure 5.11: (i) a host computer IBM PC! AT in
charge of the overall control and of the image 110 subsystem; (ii) a simple
controller containing the instruction memory, the sequencing logic, and the
interface to the host; and (iii) the pyramid of PEs.

From the
external
memory
(8 Kblts)

Propagat10n_~_-----1....f-+=:!L~----il·11
To the
external
memory

To OR
of all

o -Storage element ~ _ LogiC urnt

Figure 5.10. Block dIagram of the PE
of the PCLIP pyramId Note that the PE
IS reduced to the mInImum set of UnIts

15 p 15 d necessary to Implement the baSIC CLOs
by an effectIve broadcastmg-gatmg

o -Mulhplexer technIque

www.manaraa.com

Compact and Distributed Pyramids 143

CONTROUER PCUP PYRAMID

AT BUS

Figure 5.11. The PCLIP pyramid prototype. The whole pyramid system can be seen as an
attached processor, easily interfaced through a standard parallel port.

The designers of PCLIP have investigated possible implementation strate­
gies with VLSI technology to cope with the tremendous problem of intercon­
necting the processors; among these are recursive layout and time multiplexing
of interconnections,21 but the final prototype relies on a chip implementation
which will be presented afterward, based on PE interconnection peculiarities.
Common to other projects is the provision for a single chip to be used in the
whole machine.

The chip containing a planar 4 x 4 array of PEs has been integrated using
a custom approach in NMOS technology and has a 64-pin dual-in-line package.
It would be a simplistic approach to conceive the PEs as a self-contained unit;
the silicon area has been better used by "grouping together in one unit all one
element pattern matchers that share a two-bit pattern symbol. "22 In this way,
the number and the routing length of the control signals is minimized.

Matching is the only computation carried out by the processor. Since it
can be logically decomposed into two suboperations, one building the vertical
matching and the other extending the result with the inclusion of lateral match­
ing, it can be implemented at chip level by precomputing the value of each
2 x 2 subarray of PEs, thus needing only a single connection from the four
children to their parent. Despite this reduction in the number of connections,
the pins available with the package are insufficient to bring the whole 30 bits
of the pattern into the chip, together with the 40 bits of the near neighbors (20
lateral and 20 vertical). Therefore the matching computation is executed as a

www.manaraa.com

144 Chapter 5

sequence of two phases, taking note of the decomposition described above and
of the number of pins shared to load the complete pattern.

The chip supports a reconfiguration function to mold the apex and the
2 x 2 level of the pyramid into a single device.

The pyramid prototype. The pyramid prototype consists of four levels
with a base size of 8 x 8. The six chips which contain the 85 PEs are placed
on two boards: one for the base (four chips) and the second for the three higher
levels (two chips). Both boards host the external memory of the PEs (64 X 8
kbits and 21 kbits, respectively). A single cage contains the pyramid and two
more boards for the controller.

The controller. The two controller boards consist of the pyramid pro­
gram memory (8K instructions 24 bits long), pyramid clocking, interface to­
ward the host, and instruction sequencing logic.

The controller instructions can be grouped into the following types: pyra­
mid types combined with the PE external memory addressing; NOP and HALT
operations (the former necessary at the initialization of the system, the latter to
pass the control to the host CPU); and branch operations, which can be modi­
fied using the output of the OR-of-all signal.

The host interface consists of a set of 12 registers accessible through the
parallel port. Among these registers are a control and status register, used to
halt the controller and to initialize the program counter; two registers to specify
the instruction address and three to transfer the instruction data; two registers
to specify the external memory address; and three registers used to manage the
VO communication between the host and the base of the pyramid.

The image loading-unloading. The mechanism of exchanging image
data with the pyramid is very simple. As mentioned, the external memory of
the base is accessible from the host, when this has priority over the PE pyra­
mid. In particular, each bit plane of 64 bits can be addressed as a set of bytes,
with the 8 bits of each byte corresponding to a single row and eight different
columns. The addressing of each byte is obtained through the three registers of
the host interface as follows: two registers specify the position (row, column)
of the byte within the array of PEs; the third contains the actual byte of data to
be read and written.

5.2.4.3. The GAM System

In the acronym GAM, G stands for George Mason University, A stands
for a supplementary pyramid of adders, and M stands for MPP (massively
parallel processor).4, 27 The pyramid system built at George Mason University
by Schaefer et al. has the feature of being assembled out of existing microcir-

www.manaraa.com

Compact and Distributed Pyramids 145

cuits of the MPP from NASA,28 augmented with a tree of adders for fast bit
counting. 29

a. Interconnection Topology. The GAM pyramid has been conceived as a
standard nonoverlapped, 4-connected quad pyramid, with the complete neigh­
borhood of a PE consisting of four children, four brothers, and a parent. How­
ever, unlike the other compact pyramid systems, GAM has been assembled
using an integrated circuit originally designed for a fiat processor array (MPP),
not made for a hierarchically interconnected network. The major design effort
therefore has been to devise a way to use the MPP chips, each containing a
2 x 4 array of PEs, to be used as the building block for the pyramid.

Specifically, while the MPP chip supports lateral near-neighbor intercon­
nections, it lacks hierarchical links; yet it offers eight bidirectional data chan­
nels for memory operations that can be used for any type of transfer. Par­
ent -children data exchanges have been implemented over these lines by
properly interposing a tristate circuitry at each line: between external memory
chips, between the chip containing the parent PE, and the one containing the
children PEs. The control signals driving these circuits enable a monodirec­
tional data transfer between two adjacent layers of the pyramid. Logically, the
tristate circuitry performs a replicator function when broadcasting data toward
the four children and a selector function when accessing data out of the four
data inputs.

b. Processor Capabilities. Since the GAM system relies on the MPP chip,
the capabilities of the processing element (see Figure 5.12) are described here
only briefly. Details can be found in Batcher. 28

Near-neighbor operation. Access to the neighboring PEs at the same
level is through a multiplexing technique: the data available in the P register
are broadcast outside the PE and are loaded into the P register from one of the
four inputs of the NEWS communication network. Vertical communications
are implemented as memory read operations, with the external tristate circuitry
providing the correct data from the single PE of the adjacent level involved in
the transfer. Thus, a mixed-mode operation is executed, with decoding carried
out partially at the PE level and partially at board level.

Memory organization. Thirty-two bits of on-chip local memory are avail­
able in the form of a variable-length, serial access shift register. In the GAM
system, every PE has been equipped with 8 kbits of external memory; storing
into this memory is not conditioned by the enable register G, so a read-mod­
ify-store cycle is used.

Arithmetic and logical operations. Two units in the PE take care of ar-

www.manaraa.com

146

From
IatetaI

oetghbonl '

ORI

o . Storage elemeat

To NEWS

o =MultJpIeloer

Chapter 5

Figure 5.12. The processing node of
the GAM pyramid. The structure of the
MPP elementary processor is enriched
by the three-state switch for vertical
communications. The arithmetic and
logic capabilities of the PE derive from
the Boolean processor, the full adder,
and the variable-length shift register.

ithmetical and logical operations respectively: the former is a standard bit-serial
full adder, whose inputs are from the first bit of the shift register (acting as the
A register), from the near-neighbor register P and from the carry register C;
the latter unit only executes one of the Boolean operations on the contents of
register P and on the data available in the data bus, while the result is stored in
register P. The 32-bit, variable-length shift register is the recipient of arithmetic
operations in its last bit (acting as register B) and supports multibit operations.

Local control and global sensor. Register G is the enable register: its
content, combined with a bit of the transmitted instruction, establishes whether
the PE stores the results of the operation carried out or keeps its previous value.
The sum-OR signal, used to provide the controller with a feedback from the
pyramid for testing and branching, is obtained by ORing at board level the
values available on the data bus of the PEs.

c. System Configuration
Hardware system prototype. The GAM working prototype consists of

four major units: (i) five-level pyramid; (ii) tree of adders; (iii) controller-host
CPU; and (iv) a dedicated 110 subsystem (see Figure 5.13).

The main characteristics of the MPP chip are summarized here briefly.
Containing an array of eight PEs arranged as a 2 x 4 mesh, the chip was fabri­
cated using a mixed CMOS-NMOS technology: the faster NMOS process was
used to implement the data bus interconnecting the storage elements with the
ALU and the logic circuitry.

www.manaraa.com

Compact and Distributed Pyramids 147

Pyramid prototype. The five-level pyramid of 341 PEs was assembled
with 44 MPP chips laid out on 13 boards. Each board hosts a "module" of
four MPP chips-an array of 4 x 8 PEs. The base of the pyramid (16 x 16 PEs)
is made using eight modules, the 8 x 8 level using two modules, while the
remaining three topmost levels each use a partially configured module to embed
the 4 x 4, 2 x 2, and 1 x 1 arrays (respectively with two, one, and one chips).

Besides the four MPP chips, each board contains the following units: the
external memory for the PEs, with four 8-kbyte chips providing each PE with
an 8-kbit address space; and the off-the-shelf tristate circuitry for hierarchical
interconnections and additional discrete components for the sum-OR function.

Tree of adders . The level above the base, which contains an 8 x 8 array
of PEs, communicates with the controller through a special counting subunit, a
tree of adders: this is capable of producing the 7 bits representing the sum of a
bit collected from all 64 PEs on the level, within 100 nsec after its inputs are
stable. Considering that the clock cycle of the MPP chip is exactly 100 ns, it
is possible to count all the PEs set in the base within a time period equivalent
to eight clock cycles: indeed, by selectively loading the PEs at the 8 x 8 level
with the data from their children and activating the counting circuitry, four
vertical accesses plus four counting operations complete the sum. This is a
considerable gain over the 178 cycles necessary to perform the same operation
with a standard recursive doubling technique within the base. The tree of
adders occupies one of the 15 boards in the cage of the prototype.

The controlling environment. The GAM pyramid is controlled by an
AT&T IBM-compatible personal computer, acting both as the controller and as

1/0 SUBSYSlEM

Cameras &. Monitors

CONTROlLER

HOST
AT&T PC

GAM PYRAMID

Level 0

Levell

Leve12

Count out ut
e 01

adde Level 3

SUM-OR

/

Figure 5.13. The simplified block diagram of the GAM pyramid. Note that the I/O parallel paths
are available to every level. Only level 8 x 8 has the tree of adders counting subsystem.

www.manaraa.com

148 Chapter 5

the host computer. In its controller function, it drives the 44 lines that bring
the instructions broadcast and the clock signals to the boards, and collects the
43 lines emerging from the pyramid carrying the signals for the sum OR (5 of
them), the tree of adders output (7 of them), and the 110 paths (16 of them in
the base, then 8, 4, 2, and 1 in the upper levels).

The mode of operation of the pyramid is SIMD for all operations except
vertical transfers. To implement these transfers, the controller issues a special
instruction that specifies the couple of planes involved in the data exchange,
the role of each plane either as the sender or the receiver, and the proper
memory access instruction for the PEs. Thus, the vertical transmission obeys a
senser-receiver protocol, whose synchronization at board level prevents the
execution of more concurrent vertical transfers among planes.

The host CPU interfaces the pyramid with the 110 subsystem. Special cir­
cuitry designed around a Motorola MC68000 microprocessor performs the
video signal reformatting operation and prepares the 16 x 16 array of bits suit­
able for column parallel loading into the distributed shift register S in the PEs
of the base. The I/O channel can be routed to the other planes of the pyramid
as well.

The GAM II enlarged pyramid. Recently, the first prototype has been
expanded by adding a sixth layer. The GAM II machine now has a base of
32 x 32 PEs, built with 32 more boards. The resulting 45 boards interconnect
through a back plane that contains three separate buses. One of the buses drives
the base, another the level above the base, and the third the rest of pyramid.
At the time of this writing, the three control buses deliver the same instruction
to the pyramid, which therefore remains a SIMD machine.

5.2.4.4 The SPHINX System

The Systeme Pyramid Hierarchise pour Ie traitement d'lmage Numeriques
(SPHINX) was conceived by a joint effort of the Universite de Paris-Sud and
the ETCA defence research laboratory. 30. 31 This system belongs to the family
of "compact" bin pyramids, see Figure 3 .14. The pyramid structure is charac­
terized by intralevel interconnections arranged as a 4-connected mesh (for hori­
zontal communications) and interlevel interconnections in which PEs can com­
municate on a vertical binary tree. Therefore the PEs are alternatively the father
of two sons having the same X coordinate or the same Y coordinate. The way
in which the binary tree is embedded characterizes the hierarchical structure of
the systems; the internal PE organization mirrors this duality since there is an
equivalent circuitry on both vertical paths. The SPHINX system therefore is
well suited to dealing with tasks relying on binary tree primitives.

www.manaraa.com

Compact and Distributed Pyramids

.-------------------- -------- ------------ ------ .

F.

o -Storage element

Broadcasting
Input

[Q) ~ Logic unit

'p

TALU

~ out

o -Multiplexer

149

Figure 5.14. Block diagram of a PE of the SPHINX pyramid. Note that the dual structure of the
PE (horizontal symmetry of the scheme) mirrors the bin topology.

a. Interconnection Topology. Although the degree of each node in the bin
pyramid is lower than in the quad pyramid, the latter structure is more "iso­
tropic. " The number of PEs is greater in the bin pyramid: 2n x 2n being the
base size, the total number of PEs is 22n+ 1 -1 and (22n +2 - 1)/3, respectively,
for bin pyramid and quad pyramid. Finally, the number of layers is smaller for
the quad pyramid: 2n+ 1 and n+ 1 respectively for bin or quad pyramids. This
also means that the number of stages to be passed through is almost double
when computations are going from the base to the apex or when communica­
tions between nonadjacent PEs are implemented via the shortest vertical path.

b. Processor Capabilities
Near- neighbor operations. A block diagram of the PE architecture is

shown in Figure 5.14. The circuitry is divided in two: the upper part is related
to data exchange with the (a) child and, symmetrically, the lower part with the
(b) child. The connection to the parent requires the same circuitry as with the

www.manaraa.com

150 Chapter 5

first child, while the brother (NEWS input) data access requires that belonging
to the second child (as a consequence, while data coming from both children
can be processed simultaneously, mixed operations have restrictions: the broth­
ers can be combined in a single operation with the parent or the (a) child; the
parent with one of the brothers or with the (b) child). Moreover the neighbor
data access is implemented with multiplexing for intralevel communications
(NEWS access) and by parallel mailboxes for the interlevel data exchanges.
Since vertical paths are bidirectional and the communication primitive is read,
vertical communications must be synchronized by the external controller. Nev­
ertheless a minimal degree of autonomy in managing the vertical channel is
supplied by a pair of single-bit registers which can mask off the data read from
the children. This feature allows the choice of an arbitrary subset of the links
of the binary tree and is one of the distinctive features of the SPHINX machine.
Besides, since the NEWS logic is based on multiplexing, the near-neighbor
recursive propagation is not possible.

Memory organization. The local memory is divided in two: four banks
of on-chip static RAM (1 kbit per bank yielding 256 bits for each of the 16
PEs in the chip) and an off-chip RAM (8 kbit per PE in the prototype) accessi­
ble through the parent data link. From the logical point of view the on-chip
RAM can be considered a dual-input, dual-output device consistent with the
symmetric PE data path.

On-chip memory can be addressed through five pointers: four of them
(ptl-pt4 in Figure 5.14), loaded by the external controller, supply a direct
implementation to the four-way addressing modality of the RAM and allow an
effective looping implementation by means of an autoincrementing circuitry
(these four pointer registers have been replicated on each chip in order to re­
duce address transmission between controller and PEs); the last pointer (Lpt) is
local to each PE and is loaded by Transfer ALU (TALU), thus giving rise to
local addressing autonomy (this pointer lacks autoincrementing capability and
can only be processed serially through the TALU).

Besides feeding the TALU in local operations, the on-chip memory can
be broadcast to the NEWS network for near-neighbor operations.

The TALU. The design of the PE data path is conceived on the basis of
a read-modify-store cycle. The TALU is fed by two symmetrical sets (a and
b) of Boolean registers. Each set has a general-purpose accumulator register
(A), a masking register (M) whose content is ANDed with the TALU input, a
child register (F), and a second near-neighbor register (either the parent P or
the NEWS result V). The set (a) furthermore includes the activity bit (C) which
makes the PE conditionally execute the current instruction. The set (b) includes

www.manaraa.com

Compact and Distributed Pyramids 151

an 110 bit which is used to build a fast path for image input-output. Further­
more the two T ALU inputs can be fed directly by the on-chip memory and
then by the input broadcast to all PEs by the controller.

As well as two inputs, the TALU also has two outputs which almost sym­
metrically can reach both halves of the PE. The common destinations are the
on-chip memory, the general-purpose accumulator registers (A), the masking
registers (M), and the children channels (F). On the difference side, output (a)
only can load the local pointer (Lpt) and the condition register (C) and transmit
data to the parent channel (P); output (b) is the only one to be routed to the
brothers (through the NEWS circuitry), to the 110 scan path, and to the global
OR (Iout).

The T ALU contains a logical unit, an arithmetical section equipped with
a carry register (Ca), and a switching circuitry for data distribution that allows
us to route the internal results to both outputs. As the name suggest the inputs
can be directly switched to the output.

Local control. All three types of autonomy available in fine-grained sys­
tems, described in Section 5.2.2.4, are supported, even if partially, in
SPHINX systems.

Operation autonomy is implemented through registers C, Ma, Mb, and
Ca. In addition, the instruction code specifies whether the execution is to be
conditioned by the C register, which acts as the enabling register described in
Section 5.2.2.4. The ANDing function executed on the inputs to the TALU by
the M registers modifies, on the basis of local outcomes, the operands, thus
causing different behaviors from the PEs. Moreover, the Ca register can oper­
ate as a switching element for the swapping of the two TALU outputs, thus
realizing the following directive data-moving instruction:

Out_a = (In_a n Ca) U (In_b n Ca)

Out_b = (In_b n Ca) n (In_a n Ca)
(5.12)

Addressing autonomy is supplied by the local pointer (Lpt), managed by
the TALU, and is active only on the on-chip memory as previously described.

Connection autonomy is implemented by locally gating through the M
registers the data coming from the neighbors before feeding them to the TALU.

c. System Configuration
Hardware system architecture. The SPHINX pyramid system will con­

sist of four major subunits, organized around a VME bus: (i) the PE pyramid;

www.manaraa.com

152

Cameras &. Momtors

SPtDNX PYRAMID """-"-''"'";:=l-----f=::::::t
g:s====l==O
L7

c::::::::7
Lfi

Chapter 5

Figure 5.15. The structure of the SPHINX pyramid prototype. Starting from the 1024 PEs of the
base the remaining 10 layers are assembled with 1023 more PEs.

(ii) a set of plane controllers; (iii) a dedicated image memory board; and (iv)
the host computer (see Figure 5.15). Currently, a first prototype is in construc­
tion, and the following description refers to it.

The pyramid prototype. The PE pyramid has a 32 x 32 base, resulting in
an ll-level structure made up of 2047 PEs. Since each chip hosts a 4 X 4 subar­
ray, the first seven levels of the pyramid require 127 chips, each of them fully
exploited. The last four stages, if actually assembled, would require four more
chips to complete the pyramid, but each chip would be used only partially,
since levels 8, 9, 10, and 11 consist respectively of 2 x 4, 2 x 2, 1 x 2, and
1 x 1 PEs. To make this possible, the chip contains a special reconfiguration
circuitry that adjusts the interconnections properly.

The chip is designed with CMOS 1.5-p,m gate-array technology and has
been fabricated by VLSI TECHNOLOGY. 32 Sixteen PEs are integrated in an
8 X 8 mm2 die for a total of lOOK transistors, including the 256 bits per PE of
on-chip memory. Its basic clock cycle is 10 MHz.

The prototype is being fabricated in two stages: in the first stage, it will
embed a small pyramid, with 64 PEs in the base; in the final configuration,
the 32 x 32 base will be constructed in a modular way to allow for further
extensions.

The small pyramid consists of two extended double-Eurocard boards. Each
board hosts a maximum of six chips. Each chip has access to 16 kbytes
of external memory that are organized as 16 separate 8-kbit address spaces,
one for each PE in the chip. The boards for the enlarged pyramid will be

www.manaraa.com

Compact and Distributed Pyramids 153

twice as large as those for the small pyramid and will accommodate up to 16
chips.

Image loading and unloading. The pyramid does not interface directly
with the VME bus for image loading and unloading, but connects instead with
a special 110 board which acts as a staging memory. The main task of this
board will be the reformatting of the image data for proper transmission to the
base of the pyramid. The parallel 110 path to the pyramid is based on the
single-input-single-output scan path available in each chip and shared within
the chip by the 16 PEs. So, each of the 32 streams of data flowing toward the
base consists of packets of bits organized as four nibbles and carrying the cor­
rect sequence of 16 bits for the PEs of each chip.

The controller and the host. The controlling subsystem of the prototype
is a major design effort. 33 Since the SPHINX pyramid is designed to operate
with a Multi-SIMD control structure, each level of the pyramid requires a dedi­
cated controller, responsible for the task running on its layer and for the syn­
chronization of data exchanges with the two adjacent layers. The functional
structure of each controller is depicted in Figure 5.15. A high-level control
section, based on a standard microprocessor, interfaces with the host through
the VME bus, receives the code to be executed by the PEs of the layer and
manages the scalar code and data of the task. A second unit is the macro
generator: its purpose is to expand the instruction transmitted by the host,
which operates on multibit quantities, into the rather long sequence of micro­
operations actually executed by the PEs. The third unit, a FIFO queue, receives
such microinstructions which are later transmitted to the layer: the FIFO de­
couples the two types of activities (writing for the controller, reading for the
PEs) and allows an asynchronous mode of operation between the controller and
the PEs.

The synchronization of the tasks running on adjacent layers of the pyramid
is the critical part of the Multi-SIMD control strategy of SPHINX. Different
approaches have been proposed, which are based on alternative strategies of
programming the pyramid to execute cooperating processes. A thorough analy­
sis of the implications on the programming models of the synchronization pro­
cess is looked at in Chapter 9. In this context it suffices to highlight the hard­
ware resources on which the synchronization mechanism is built. Data
exchanges between two adjacent layers are synchronized by creating named
channels in the off-chip memory, which are shared between the two layers.
The low-level synchronizer depicted in Figure 5.15 is the minimal hardware
required to solve contention on the access to the shared memory. It is the
responsibility of the tasks running on the layer to issue the proper instructions
to activate the synchronization policy when interlayer transmission is required.

www.manaraa.com

154 Chapter 5

The prototype system cannot work as a stand-alone machine but requires
a workstation both for program development and execution. Any VME-based
machine is suitable as a host; in the first prototype a SUN 4 system was used.

5.3. Distributed Pyramids

Compact pyramid architectures, such as those examined so far, fall within
the fine-grain paradigm and build three-dimensional machines by assembling
specially designed integrated circuits. Each of these embeds more than a single
computational node. The class to be examined here follows the complementary,
coarse-grain approach: each node is capable of quite advanced functions and is
usually composed of a standard microprocessor, which accesses a bank of high­
speed standard memory. It follows that the number of nodes which make up a
prototype is much smaller than that found in compact pyramids; also, motiva­
tions for the systems and practical realization problems are quite distinct.

If one examines the image processing and computer vision domain, the
term distributed is easily justified: in the early and intermediate stages of the
computations, such systems process blocks of data on a per-node basis rather
than associating each node with a pixel of the image. To do so, the available
nodes are scattered and properly distributed over the image data. As mentioned,
this type of processors-to-image allocation favors computational-intensive, lo­
cal operations whose communication graph is liable to stay completely within
the image block local to the processor. Instead the recursive- and propagation­
type operations are more difficult because of the border transition problem
which ensues when neighboring data reside on memory blocks of different
processors. However, if the algorithms to be executed move into the medium­
to high-level domain, the more flexible data structures necessary for the compu­
tations are better mapped in the block-partitioned memory of distributed sys­
tems rather than in the tightly orchestrated one of compact systems.

Moreover, computer vision is not the only application domain where the
coarse-grain approach can be used efficiently. Actually, distributed, hierarchi­
cal systems have been called upon largely for computationally intensive, data­
parallel computations 34 such as numerical simulation of physical phenomena,
molecular dynamics, Monte Carlo methods, large-scale integrated circuit physi­
cal simulation, computational chemistry, and computational fluid dynamics.
These problems map very well onto a homogeneous, parallel architecture be­
cause the underlining physical phenomenon is "space extensive" and can be
modeled with local interactions. A gridlike interconnection of powerful pro­
cessing nodes does the job of numerical simulation very well and can often be

www.manaraa.com

Compact and Distributed Pyramids 155

added to with a limited number of additional, reduced resolution grids in order
to implement multigrid algorithms.

The architectural requirements of such systems therefore constitute the em­
bedding of powerful, potentially autonomous and self-supporting microproces­
sors into a regular topology network. The case analyzed here is that of pyramid
topology. The interconnection of such processors in a hierarchy poses imple­
mentation alternatives which are quite different from those of compact systems.
The processors are usually standard components; as such they do not come
with dedicated interconnections ports (the transputer of INMOS is the excep­
tion), but are rich in communication facilities. Parallel and serial I/O ports are
the first possibility; the transfer rates that can be obtained are, however, quite
limited, and the associated protocols rather cumbersome. A second strategy is
memory sharing; it allows for large common address space between neigh­
boring nodes, but is somewhat difficult to manage in the synchronization of
accesses. Dual-ported devices are becoming quite common, thus offering a ba­
sis for the implementation of virtual links between two processors. If the archi­
tecture requires it, special-purpose, multiport controllers can be designed to
augment the interconnectivity of the processor-memory module.

A final characteristic of distributed pyramids stems from the autonomy of
operation conceptually available at each node. A standard microprocessor must
fetch its instructions from a local memory and runs the resulting algorithm with
little or no interaction with a controlling device. Yet, the overall structure of
the systems suggests two possible ways to use the inherently hierarchical ar­
rangements of processing nodes: either according to a multiresolution approach
where all layers process data at different resolutions or according to a
"worker-dispatcher" paradigm where one layer (the bottom one) takes care of
the actual computations and the upper ones execute administration management
tasks, such as program and data downloading, task dispatching, and 110 man­
agement. Roughly speaking, it is possible to conceive a hierarchical distribu­
tion of the algorithms, where the control portion is mapped at higher levels of
the hierarchy, with the base performing only numerically intensive activities.
While such a paradigm offers a distinctive implementation of the Multi-SIMD
control strategy, it entails a much higher level of granularity than is possible
with compact systems.

5.3.1. The EGPA System

A notable embodiment of the concepts that have just been described is the
set of prototype machines34- 36 which can be collectively referred to as EGPA
(Erlangen general-purpose array). The EGPA program is based on a number of

www.manaraa.com

156 Chapter 5

functions, briefly described here, which have led to the construction of two
fully functioning prototypes.

a. Interconnection Topology. The systems, built or conceived, follow the
quad-pyramid topology; however, while the processors of a layer are intercon­
nected in square tessellation through bidirectional, symmetrical channels, hier­
archical communications are monodirectional and place the burden of activating
and managing the communication on the parents.

b. Processing Node Capabilities. The EGPA program is based on a dis­
tributed, shared-memory approach. Each node is composed of a processing unit
(a standard microprocessor) and a memory module and is referred to as a proc­
essor memory module (PMM). The processing capabilities of a node remain
with the microprocessor; however, sometimes the standard instruction set of
the microprocessor could be extended by microprogrammable attached proces­
sors that can be best tailored to the target computation. The interconnections
between nodes are obtained by sharing memory modules. To obtain the degree
necessary for a quad-pyramid topology, such memory sharing is achieved by
custom devices acting as mUltiport memory controllers.

The overall approach to setting up the node of an EGPA system is that of
following a building-block philosophy: a node can be used to set up systems
according to the topology that best matches the tasks, and sufficient inter­
connections are available for high-degree topologies, particularly for quad
pyramids.

c. Control Structure. The hierarchy of planes reflects the processing hier­
archy typical of numerically intensive data-parallel computations. The base
level of the hierarchy acts as a "worker's" array, activated and controlled by
a second layer of controllers and dispatchers, while the overall control of the
system is shared by the topmost node and the host. The systems are designed
to operate in a SPHD mode as far as operations on data are concerned: the
array of "worker" nodes executes the same program, which has been loaded
in their private memory by the parent node by accessing their shared memory.

d. Expandability. The use of standard microprocessors and memory mod­
ules and the resulting architecture of the node lay the foundation for system
expandability: the only limitation to system expansion and reconfiguration is
due to the mechanism by which memory is shared. The mUltiport approach in
the largest prototype supports a maximum of eight connections.

www.manaraa.com

Compact and Distributed Pyramids

Local
Mernol)'

(64l\bRAM)

157

Figure 5.16. Block diagram of the PMM node of the DIRMU pyramid prototype. The 16 unidi­
rectionallinks are subdivided into eight outputs from the PU, and eight inputs to the local memory
module of which only five are used to set up the pyramid topology.

e. The Prototypes. The EGPA pilot prototype35 was the first realization of
the EGPA program, built and operated between 1977 and 1983. It is a two­
level pyramid assembled with five PMMs. Each node contained an AEG 80-60
processor: its main features were a 32-bit architecture and user microprogram­
mability. The pilot pyramid operated under the control of a standard operating
system adapted to the hierarchical environment: mailbox techniques for tasks
communication, data partitioning, and task allocation-deallocation were among
the chores demanded of the operating system.

The DIRMU subprogram34 led, in 1985, to the replacement of the pilot
pyramid with a three-level pyramid. The processing node of the PMM was
assembled with 8086/8087 INTEL microprocessors (see Figure 5.16): locally
and privately to the processors were 36K of RAM and 48K of ROM memory,
which hosted local components of the operating system and self-test programs.
Connectivity with other PMMs was through a maximum of eight channels for
memory accesses. The memory module contained a multiport, an eight-way
control device, which controlled access to 64K of standard memory.

Larger EGPA systems have also been conceived as well. The EMSY 85
pyramid36 was designed to reach a four-level structure: the prospective pro­
cessing module was to contain an INTEl 286/287 couple, while the memory
module would allow for a half-megabyte of local addressability.

The largest configuration35 envisages a 16 x 16 base-level pyramid, with a
node specified to offer a conventional 32-bit advanced mirroprocessor (either
Motorola 68030 or INTEL 80386) with 4 Mbytes of multiported memory,
driven by a special-purpose controlling device and with an attached high-speed
microprogrammable coprocessor for special-purpose instructions. This system
was also conceived according to the "worker-dispatcher" mode: the 8 x 8

www.manaraa.com

158 Chapter 5

level hosted the distributed operative systems, with 64 specially designed 110
channels for high-speed disk access (10 Mbytes/sec transfer rate each). The
prospective pyramid had one more level, instead of three more, consisting of a
single PMM node linked by a special bus to the PMMs at the 8 x 8 level: it
was therefore a flattened structure.

The specification of the system gives rise to an overall memory space of
1 Gbyte, for a global computation performance of 1 Gflop and an aggregated
transfer rate of 640 Mbytes/sec.

5.4. CONCLUSIONS

This chapter has analyzed the class of homogeneous pyramid architec­
tures, covering both compact and distributed implementations. After a look
at the common features of the class, a short description of each system has
been given.

In regard to compact pyramids, the predominant reason that has prevented
the construction of larger systems is the complexity of wiring hierarchical inter­
connections both at board and system levels. Chip pinout requirements of a
pyramid topology are proportional to the number of nodes in the bottom layer
embedded in the chip; thus, rather than growing in a linear fashion with the
perimeter of the chip, they are roughly proportional to the area. Important ad­
vances in packaging technology are required to overcome this problem, so the
ratio of core area to periphery area in a chip hosting a subarray of a pyramid
structure remains at a good level.

All the implementations of these pyramids have never gone beyond a
small prototype. The largest such implementation is a five-level pyramid, while
at least 10 levels are necessary to obtain a pyramid capable of tackling real-life
image processing problems.

A definite obstacle is, however, fault tolerance. The three-dimensional to­
pology of pyramids prevents using the well-established techniques typical of
mesh arrays. No engineered realization of a massively parallel system is ever
possible without sound provisions for fault detection and correction. Therefore,
while the motivations for compact pyramid systems remain valid, other ap­
proaches to the feasibility problem can be explored as discussed in Chapter 7.

The distributed pyramid family, which is based on coarse-grain processing
nodes, shares other types of problems. Here the issue is in the arbitration of
memory accesses to realize internode communications. The processing node
with the largest connectivity ever built has a maximum of eight links, which
are not even enough to embed a quad pyramid with 4-connected topology.

www.manaraa.com

Compact and Distributed Pyramids 159

Other Issues regard the efficIent downloadmg of software from the controlling
host and the coordination in SPMD mode of the fully autonomous processing
units in the PMMs.

REFERENCES

P E Damelsson, Vices and virtues of Image parallel machmes, m Dlgltal Image AnalysIs
(S Levlaldl, ed), pp 47-59, Pitman, London (1984)

2 V Cantom, V DI Gesu, M Ferretti, S Levlaldl, R Negnm, and R Stefanelli, The PAPIA
system, J VLSI SIgnal Process 2, 195-217 (1991)

3 S L Tammoto, T J Ligockl, and R Lmg, A prototype pyramid machme for hierarchical
cellular logiC, m Parallel Computer VlSlon (L Uhr, ed), pp 43-83, Academic Press, Or­
lando (1987)

4 D H Schaefer, G C Wilcox, and V J Harns, A pyrarmd of MPP processmg elements­
expenences and plans, Proc 18th Ann Hawan Int Conf System SCience, Vol I, 1985,
pp 178-184

5 F Devos, A Mengot, and B Zavldovlque, Integration d'un processeur cellulalre pour une
architecture pyramidale de traltement d'image, Rev Phys Appl 20, 23-27 (1985)

6 M Ferretti, Overlappmg m compact pyramids, m PyramIdal Systems for Computer V,SIOn (V
Cantom and S Levlaldl, eds), pp 247-260, Spnnger-Verlag, Berhn and Heidelberg (1986)

7 H LI and M Maresca, Connection autonomy m SIMD architectures a VLSI ImplementatIOn,
J Parallel Dlstnb Comput 7, (2), 302-320 (1989)

8 H Yoda, Y Ohuchl, Y Tamguchl, and M EJm, An automatic wafer mspectlOn system usmg
plpehned Image processmg techmques, IEEE Trans Pattern Anal Machine Process 10 (1),
4-16 (1988)

9 W D Hilhs, The ConnectIOn Machine, MIT Press, Cambndge, MA (1982)
10 M J B Duff, Propagation m cellular logiC arrays, Proc Workshop on Picture Data Descnp­

tlon and Management, 1980, pp 259-262
II V Cantom, M FerrettI, and M Savml, ConnectIvity and spacmg checkmg WIth fine gramed

machmes, m Machine VlSlon for InspectIOn and Measurement (H Freeman, ed), pp
85-100, AcademiC Press, San Diego (1989)

12 H LI and M Maresca, Polymorphic-torus network, IEEE Trans Comput 38, (9)
1345-1351 (1989)

13 D W Blevms, E W DaVIS, R A Heaton, and J H Relf, BUTZEN a highly mtegrated
massIvely parallel machme, J Parallel D,stnb Comput 8, 150-160 (1990)

14 F A Gemtsen, A companson of the CLIP4, DAP, and MPP processor array Implementa­
tions, m Computing Structures for Image Processing (J M B Duff, ed), pp 15-30, Aca­
demiC Press, London (1983)

15 V Cantom, M FerrettI, S Levlaldl, and F Malobertl, A pyramId project usmg mtegrated
technology, m Integrated Technology for Parallel Image Processing (S Levlaldl, ed), pp
121-132, AcademiC Press, London (1985)

16 V Cantom, M Ferretti, S Levlaldl, and R Stefanelli, PAPIA pyramIdal architecture for
parallel Image analYSIS, Proc 7th Symp Computer Anthmetlc, Urbana, IL, 1985, pp
237-242

17 T Fountam, Processor Arrays Architectures and ApplicatIOns, AcademiC Press, London
(1987)

www.manaraa.com

160 Chapter 5

18. G. Gerardi, The PAPIA controller hardware implementation, in Pyramidal Systems for Com­
puter Vision (V. Cantoni and S. Levialdi, eds.), pp. 153-164, Springer-Verlag, Berlin (1986).

19. O. Catalano, G. De Gaetano, V. Di Gesil, G. Gerardi, A. Machi, and D. Tegol0, Low level
languages for the PAPIA machine, in Data Analysis in Astronomy II (V. Di Gesil et al., eds.),
Plenum Press, New York (1986).

20. V. Di Gesil An high level language for pyramid architectures in Pyramidal Systems for Com­
puter Vision (V. Cantoni and S. Levialdi, eds.), pp. 329-339, Springer-Verlag, Berlin (1986).

21. S. L. Tanimoto, Towards hierarchical cellular logic: design considerations for pyramids ma­
chines, Computer Science Dept., Univ. Washington, Technical Report 81-02-01 (1981).

22. S. L. Tanimoto, T. J. Ligocki, and R. Ling, A prototype pyramid machine for hierarchical
cellular logic, in Parallel Computer Vision (L. Uhr, ed.), pp. 43-83, Academic Press, Or­
lando, FL (1987).

23. S. L. Tanimoto and J. J. Pfeiffer, Jr., Data processing system having a pyramidal array of
processors, U.S. Patent No. 4.622.632 (1111111986).

24. S. L. Tanimoto, A hierarchical cellular logic for pyramid computers, J. Parallel Distrib.
Comput. 1, 105-132 (1984).

25. J. Serra, Image Analysis and Mathematical Morphology, Academic Press, New York (1982).
26. R. P. Blanford and S. L. Tanimoto, A pyramid machine simulator for the symbolics 3600,

Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, Miami, FL,
1986, pp. 427-429.

27. D. H. Schaefer, P. Ho, J. Boyd, and C. Vallejos, The GAM pyramid, in Parallel Computer
Vision (L. Uhr, ed.), pp. 15-42, Academic Press, Orlando, FL (1987).

28. K. E. Batcher, Design of a massively parallel processor, IEEE Trans. Comput. C-29(9),
836-840 (1980).

29. D. H. Schaefer and P. Ho, Counting on the GAM pyramid, in Pyramidal Systems for Com­
puter Vision (V. Cantoni and S. Levialdi, eds.), pp. 125-131, Springer-Verlag, Berlin (1986).

30. A. Merigot, P. Clermont, J. Mahat, F. Devos, and B. Zavidovique, A pyramidal system for
image processing, in Pyramidal Systems for Computer Vision (V. Cantoni and S. Levialdi,
eds.), pp. 109-124, Springer-Verlag, Berlin and Heidelberg (1986).

31. Y. Ni, A. Merigot, and F. Devos, Designing a VLSI processing element chip for pyramid
computer SPHINX, in Progress in Image Analysis and Processing (V. Cantoni et aI., eds.),
pp. 759-766, World Scientific, Singapore (1990).

32. Y. Ni, Contribution a l'etude des architectures massivement paralleles pyramidales: Realisa­
tion d'un circuit VLSI multiprocesseur et de definition d'un modele de controle dynamique,
Thesis University Paris-Sud, Institut d'Electronique Fondamentale (1990).

33. S. Bouaziz, E. Pissaloux, A. Merigot, and F. Devos, Some hardward and software considera­
tions for the multi-SIMD control strategy of massively parallel machines, Proc. 5th COM­
PEURO 91, Bologna, 1991, pp. 180-183.

34. G. Fritsch, Numerical simulation of physical phenomena by parallel computing, in WOPPLOT
86, Parallel Processing: Logic, Organization, and Technology (J. D. Becker and 1. Eisele,
eds.), pp. 40-57, Springer-Verlag, Berlin and Heidelberg (1986).

35. G. Fritsch, General purpose pyramidal architectures, in Pyramidal Systems for Computer Vi­
sion (V. Cantoni and S. Levialdi, eds.), pp. 42-58, Springer-Verlag, Berlin and Heidelberg
(1986).

36. G. Fritsch, Memory-coupled processor arrays for a broad spectrum of applications, in WOP­
PLOT 83, Parallel Processing: Logic, Organization, and Technology (J. D. Becker and
1. Eisele, eds.), pp. 158-177, Springer-Verlag, Berlin and Heidelberg (1984).

www.manaraa.com

Chapter 6

Pipeline Multiresolution Systems

As an alternative to the true pyramidal arrays of processors other specialized
hardware solutions have been proposed to exploit multiresolution approaches.
Among these the most popular is the family of pipeline architectures special­
ized for decimation and expansion of the image size. The major systems in this
class are PVM, and HCLIPIPE. These systems which are designed to perform
foveation and tracking processes efficiently, are introduced in some detail.

6.1. INTRODUCTION

As we have seen in Chapter 5 the true pyramid of processors requires very
large (and expensive) systems. A solution, which allows the adoption of the
strategies for foveation, tracking, and general planning as described in Chapter
2, and which in general cannot achieve the performance of a true pyramid but
which has a limited cost, is that based on a pipeline architecture specialized
for decimation.

In order to physically implement this approach, the simplest and least ex­
pensive hardware paradigm is shown in Figure 6.1. The main pipeline loop
includes the image memory that stores all versions of the decimated image, a
filter unit which is fed by the subarray element values obtained with suitable
delay lines, and a decimator unit which selects a subset of elements that will

161

www.manaraa.com

162

dela lines

Chapter 6

Figure 6.1. The hardware paradigm of a
pipeline multiresolution constructor. The data
stream on the main loop and recursively the dif­
ferent resolution versions of the image are
built, step by step, from the lower level up to
the apex (single pixel image).

fonn the next reduced version of the image. The filter unit may perfonn convo­
lutions implementing Gaussian and, with additional simple hardware, Laplacian
transfonns of the original image.

This solution usually includes a dedicated filter which implements the con­
volution with a limited kernel (in space 3-9 pixels in linear size and with
constraints in the coefficients) in one (or few) clock cycle. In this manner, all
the multiresolution versions of the image can be obtained in ! of the scanning
time of the original frame. In fact, the scanning of the first level, having only
! of the image data, requires only! of the base scanning time, the second level
requires (!)2, the third (!)3, and so on, for a total on.

A host system, adopting this special hardware, can obtain the multiresolu­
tion environment with a delay of 113 of the frame time. This multiresolution
constructor constitutes the minimum hardware for implementing a "smart sen­
sor" which not only supplies the multiresolution environment but which also,
being a convolver, is suitable for implementing low-level operators. Moreover,
this specialized coprocessor is usually capable of supplying selected windows
of variable sizes and resolutions to the higher-level or host system.

In what follows, the machine conceived almost 10 years ago at the
D. Sarnoff Center (Princeton, NJ) by Burt and colleagues,l will be described
in some detail. This machine has been continuously upgraded with new meth­
odologies and new hardware facilities. Some remarks will be made on the PIPE
system,2 which was conceived to supply the computational framework of the
hierarchical cellular logic (HCL) system described in Section 5.2.4.2 at a lower
cost (obviously, with lower time perfonnances).

Another system, mentioned in Chapter 2, which can be classified in this
family is the GOP (general operator processor) 3, 4 image computer. In fact,
even if this system is not conceived as a strictly multiresolution machine, the
objective of the designers has been to gain efficiency in the feature pyramid
manipulation. The computational paradigm of the system is given in Figure
2.10. The implementation was based on a two-stage pipeline architecture. The

www.manaraa.com

Pipeline Multiresolution Systems 163

first stage contains the parallel peripheral processor composed of four parallel
pipeline units, in which a data stream from the image memory is weighted with
kernels extracted from a separate mask memory segment. Content-dependent
image filtering can be realized by looping through the feedback structure as
shown in Figure 2.10. After the parallel processing phase executed in the first
stage, the serial and flexible processing usually done at an higher level of data
abstraction is performed on the second stage. On the basis of the described
prototype, the proposers developed a new system (GOP 300) which is marketed
by Context Vision. This last version includes, besides the hierarchical organiza­
tion, other special function subunits (in particular, a geometric transform pro­
cessor and a bit-oriented processor).5

6.2. PYRAMID VISION MACHINE SYSTEM

The first pyramid pipeline machine to be designed and built was the pyra­
mid vision machine (PVM). In addition to the construction of the Gaussian and
Laplacian pyramids, the PVM was designed to perform fast execution of low­
and intermediate-level operators and the foveation process.

The framework of the pipeline pyramid is specialized as shown in Figure
6.2. The purpose of the new blocks (with reference to Figure 6.1) is to allow
the implementation of Laplacian pyramids "on the fly. ,,6

The Gaussian pyramid G is constructed directly by the outer cycle, follow­
ing Eq. 2.12:

Vh. 1 :5oh:50n (6.1)

having Go=I, stored in the image memory, through the expander (set to 1) the
data arrive at the filter w (which has the characteristics described in Section

Figure 6.2. A simplified block diagram of
the PVM pipeline pyramid processor. One
scan of the image sequence is sufficient to
implement both G and LFSD while for the
complete LRE representation each step re­
quires two successive scans of the current
image representation.

Image
~ ______ ~M~ry~ ____ ~

www.manaraa.com

164 Chapter 6

2.4.2) and then go directly to the decimator and back to image memory. By
looping onto this cycle, all the Gaussian levels are built into just one scan se­
quence.

As briefly described in Section 2.4.3, the Laplacian pyramid L can be
obtained by subtraction of two consecutive Gaussian representations. In order
to achieve equal size representations at different levels, the hardware shown in
Figure 6.2 supports two solutions. The first solution is called filter-sub­
tract-decimate (FSD) because the successive levels are built by first filtering,
then subtracting, and lastly decimating the image. L FSD is performed on the fly
in just one scan sequence on the basis of the following equation:

Vh, O:5h<n (6.2)

where Gh + I represents the partial resl!!.ts, before decimation, in the process of
computing the next scaled Gaussian Gh + I. This is achieved on the fly at the
ALU output, when the inputs are the filtered and unfiltered Gh (multiplexer S
switching the higher input signal). Note that this FSD solution does not allow
image recovering from its Laplacian representation: for several applications this
is a real disadvantage.

A different implementation that permits the exact image reconstruction is
based on the following Laplacian definition, which is called reduce expand
(RE) 6 because each Laplacian level is computed after the construction of the
successive Gaussian level is accomplished and then reexpanded to the current
Laplacian level size:

Vh, O:5h<n (6.3)

for Ln = Gn and I = Go, Eq. (2.27) for representation completeness is easily
verified. The implementation of Eq. (6.3) requires a second cycle: after having
computed Gh+ I' it is necessary to work with the inner loop, feeding the ALU
with Gh (through S, the lower input signal) and carrying the new Gaussian level
Gh + I to the expander block (for padding) and then to the filter unit (expanding
kernel w'). This solution requires a richer hardware, and it can be more time
consuming. But L achieved with the RE method is a complete transform as
required for image coding, transmission, and other applications.

On the basis of the functional diagram of Figure 6.2, a new chip has been
designed. 7 The Sarnoff chip has been integrated using I-p,m CMOS standard
cell technology in a 300 x 300 mil die and is packaged in a 84-pin PLCC. It
was fabricated by VLSI technology, and the basic clock cycle is 20 MHz. The
chip contains a 5 x 5 filter based on four horizontal line delays of 1024 pixels,

www.manaraa.com

Pipeline Multiresolution Systems 165

and the frame store is external. The filter can be programmed, with edge con­
trol capability for G, LpSD' and LRE pyramid construction, gradient, moment,
and subband pyramid transforms and inverse transforms. The filter coefficients
can be selected on a limited set (including binomial coefficients), but are rich
enough to effectively solve a remarkable range of practical applications. At
clock rate, a single chip can compute G and LpSD in less than 18 msec (55
frame/sec) for standard 512 x 512 images.

This multiresolution constructor can be used as an attached processor, with
a low-cost host to solve some specific and limited tasks, or it may be included
as a smart sensor in composite systems. In the following sections two cases of
integration of the pipeline processor are described: the lattice or segmented
pipeline architecture and the CAIP system.

As an attached processor the PVM has been run with several hosts, but
most developments have been with an IBM AT. 8 An interesting application of
this system (the host in this application was a M68000-based microcomputer),6
which achieves real-time performance, was the surveillance of a building and
its environment in an outdoor scene. In these images the conditions of illumina­
tion and the selectivity of the movements to be detected (slow movements like
those of clouds should be ignored as well as fast movements of tree leaves due
to the wind) further complicate the solution of the task.9 The solution pursued
in this practical case is in principle the same as the one illustrated in Section
2.6.1, particularly the third example, illustrated by the image flow diagram
given in Figure 2.11c. Note that this system, which was composed of a few
boards, was working before the development of the Sarnoff chip, which can
now be adopted to simplify and reduce hardware and cost.

6.2.1. The Segmented Pipeline Architecture

A general vision application requires a task decomposition in which the
solution is achieved by a sequence of the available computational primitives;
note that the computation time of a single primitive varies as a function of its
computational depth and is dependent on the resolution level. For instance, the
maximum resolution (which corresponds to the original image) takes the ordi­
nary frame time, while the second level will only require one quarter of that
time, etc. The flow diagrams introduced in Section 2.6 illustrate some common
sequences of filterlike operations, exploiting multiresolution.

If some buffers divide the sequence into operative blocks having the same
resolution or data load (e.g., equal region of interest sizes), each active primi­
tive can run at the maximum design rate. The image data flow through the

www.manaraa.com

166 Chapter 6

processing elements in a pipeline or general data flow modality, where source
and destination are the buffer modules.

A schematic representation of the proposed segmented pipeline machine,
in which the computation segments can be rapidly allocated to the processing
modules in the appropriate sequence, is given in Figure 6.3.10 It consists of
some memory modules (in the first prototype 8 three memory buffers of
512 x 512 pixels) and some processing modules (in origin, two-cluster mod­
ules, one including a multiplier, an ALU, and a shifter, while the second con­
tains the PVM system previously described).

Buffer elements are involved in different activities:

• They are source and destination of the data block of the computation
segments; in general, they must have sufficient memory space to store
several image data blocks.

• They support data communication between the pipeline machine and
the other system units (host computer, MIMD system for high-level
processing, etc.). In order to implement these exchanges three mutually
exclusive 110 capabilities are adopted: they can serve as input and out­
put data ports within the pipeline machine exchanges and can supply
the random data access from outside the machine (shaded lines in Fig­
ure 6.3).

• They support decimation, which is executed when data are stored in

110 ~ Images
~

Host Unit

Figure 6.3. The simplified scheme of a seg­
mented pipeline system: (left) image 110 pe­
ripherals and frame buffer elements; (right) a
collection of different processing operators. in­
cluding the PVM system for the muItiresolution
construction environment.

www.manaraa.com

Pipeline Multiresolution Systems

Figure 6.4. The simplified scheme of the CAIP sys­
tem. The peripheral subunit which implements the
multiresolution environment is integrated through a
stream switching network with a powerful mUltiproces­
sor system.

PVM

167

CAIP
Array

the buffer, and expansion, when data are transferred from the buffers
to the operational units.

• Windowing operations can be performed, even in combination with the
expand operation, during data transfer out of the buffers.

The switch network allows flexible interconnection between the buffer
modules and the operational units. Multiple sequences of flows from the buffers
(even with resampling) to one or more computational units and back to the
memory module are allowed simultaneously. The host computer is charged
with the control of data flows and computations and of the higher-level vision
functions.

The segmented pipeline structure can be extended with a network of such
modules realizing a multiple pipeline or lattice pipeline 1 1 in which the branches
of the image flow diagram can be executed in parallel and where the flows
converge and diverge, accumulating and retransmitting data through the buffers
but without loops.

6.2.2. The CAIP System

A conceptually different system proposed around the PVM is the CAIP
advanced image processing system (CAIP) conceived at the CAIP Center of
Rutgers University. 12 A general scheme of this machine is given in Figure 6.4.

In this machine, the PVM unit works in combination with a multiprocessor
system operating in MIMD mode, the CAIP array. Multiresolution is the basic
image computational approach of this system. The MIMD unit works in a sec­
ond hierarchical level dedicated to the (i) analysis of different regions of inter­
est, (ii) investigation of alternative solutions within a region, and (iii) verifica­
tion of the presence of pertinent features corresponding to a supposed solution.

On this basis the CAIP system architecture is composed of four modules

www.manaraa.com

168 Chapter 6

as shown in Figure 6.4: the pyramidal pipeline unit PVM (able to perform
arithmetic and Boolean operations between images, point and local operations
like convolution and filtering, gray-level statistics, and decimation in order to
implement multiresolution versions of the images), the CAIP MIMD
mesh-hypercube array of transputers (in charge of intermediate- and high-level
computational stages), and the interface between the two units and the host
computer.

The key component of the system is the interface between the smart sensor
and the high-level unit. Its main features are the ability to broadcast image
segments (regions of interest) from any of the buffers of the PVM to a selected
subset of the nodes in the CAIP array; the "on the fly" regular distribution of
portions of an image to the nodes and, conversely, the collection of data blocks
from nodes to eventually form a reconstituted image in the PVM; and image
segment exchanges between the processing units of the CAIP array.

This two-stage vision system, in which low- and high-level computations
are performed in two different (integrated) units and which is specialized for
peripheral vision activity and intermediate and symbolic processing has been
often proposed but never built to its full capability.

6.3. PIPE SYSTEM

A second pipeline processor which supports pyramidal processing is the
pipelined image processing engine (PIPE) developed by the National Bureau of
Standards of USA, and University of Washington. As in the HCL pyramid
described in Section 5.2.4.2, the plan of the PIPE machine incorporates a set
of cellular logic operators (CLOs), based on the quad-pyramid topology, as
primitives of the pyramidal algebra of images called hierarchical cellular logic,
introduced by Tanimoto. 13 Furthermore, the PIPE machine is tailored for the
implementation of these operators which constitute a subset of its basic pyram­
id-mode operations. 14 In fact, each HCL primitive operation corresponds to a
single instruction and is executed in a single machine cycle of PIPE.

6.3.1. The PIPE Architecture

The PIPE system is based on a generalized pipeline (shown in Figure 6.5)
of a sequence of modular processing stages (MPSs, eight in the prototype).
The overall architecture consists of a bidirectional linear cascade of MPSs.
Each MPS contains a PIPE processor and two frame buffers and is concerned

www.manaraa.com

Pipeline Multiresolution Systems

Figure 6.S. The lmear sequence of three
modular processmg stages of the PIPE sys­
tem Each MPS IS connected to two neIgh­
bors and can recursively process ItS own
data The combmmg and dlstnbutJon logic
wlthm the MPS are given m a simplIfied
scheme

Recursive Path-way
,------,

Retrograde Pathway

169

with one of the pyramid levels. In the prototype a complete quad pyramid with
an image in the base of 256 x 256 pixels can be contained within the machine
(apex in the eighth stage).

The three outputs of each MPS correspond to the three roles of the
"home" cell in the pyramidal near-neighbor defined in Figure 5.4. The bottom
output corresponds to the father role, so a retrograde pathway leads to the input
of the left MPS corresponding to the previous level; the middle output corres­
ponds to the son role, so a forward pathway feeds the successive level (right
MPS); finally the upper output corresponds to the intralevel activity with the
brothers, and the pathway recursively enters the same MPS.

Images can be transferred from one layer to another In scan mode. When
working in pyramId mode, gomg from the base to the apex, the image SIze IS
reduced to one half In each lInear dimension by a sampling process WhICh
delivers through the forward pathway the odd pixels of the odd rows in a
densely packed array. In the opposite direction (apex to base), through the
retrograde pathway, data are replicated so that each father IS assigned to the
four sons.

Obviously, the recursive pathway leaves the Image SIze unchanged. The
computation capability of the processor allows each stage to manipulate,
through the recursive pathway, a complete 256 x 256 x 8-bit image in is sec
(image machine cycle). Moreover, the 8 bits/pixel can be manipulated as eight
independent Boolean data. In this way 2 x 8 bIt planes can be operated in paral­
lel, reaching the performance of more than 5 X 108 binary operations per
second.

www.manaraa.com

170 Chapter 6

6.3.2. Pyramid Neighbor Operations

The basic pyramid near-neighbor operation carried out by PIPE is the CLO
matching operation in the forms AND_Match and OIL-Match described in
Section 5.2.4.2b. The operations involve two operands: the first is the values
of the 14 cells of the corresponding pyramidal neighborhood; the second op­
erand P is a pattern which describes the local structuring element. Each of the
14 extended neighborhood values is in ordered correspondence with one digit
in the pattern specifying either the 0 or 1 of D (don't care condition) value.

In the AND_Match defined in Eq (5.8), either the result is 1 if each and
every element of the pattern matches its associated element in the extended
neighborhood, or it is 0 when at least one element does not match. In the
OIL-Match defined in Eq. (5.9), the result is 1 if at least one element of the
pattern, different from D, matches its associated element in the extended neigh­
borhood. It is 0 when no element matches.

The two Match operations are the PIPE pyramidal primitives, and logical
and data movement operations must be implemented through them (in PCLIP
they were just the primitive, but here the instruction set is much wider).

The bits of the 3 x 3 subarray (e.g., home cell and brothers) in PIPE are
packed into a 9-bit vector which addresses a 512-entry look-up table (LUT). If
the LUT has previously been loaded with the correct result of the requested
matching with P, the intralevel AND_Match or OIL-Match operations can
be executed in one machine cycle (in fact, the hardware supports the parallel
execution of two independent operations of this kind). In the same machine
cycle this result can be delivered in parallel to the connected MPS.

This capability allows us to execute the complete AND_Match or
OIL-Match operation over the 14 pyramid neighbors in a two-step cycle. In
the first step the NOP-l and NOP-2 operational blocks in Figure 6.5 execute
the matching between the intralevel home brothers and sons, respectively
(AND_Match and OIL-Match operations are decomposable and commuta­
tive). The three MPS outputs deliver, respectively, the father (retrograde path­
way), the partial matching of the sons (forward pathway), and the partial local
matching of home and brothers (recursive pathway). All stages receive the par­
tial results in the three inputs (the father data are matched in the entry LUT of
the retrograde pathway). The cascade of the two ALUs congruently accom­
plishes the matching, in the order of father and home, and finally matches this
result with the son (see Figure 6.5). Note that this operation can be executed
in parallel for eight bit planes. 14

The AND_Match or OIL-Match operations can be executed iteratively
and even recursively until no further change occurs (see Section 5.2.2.1b).

www.manaraa.com

Pipeline Multiresolution Systems 171

This control is based on a UNTIL NO CHANGE metaoperator that occupies at
the most a machine cycle for some HCL operations (in some cases it can be
incorporated into the iterations).

6.4. CONCLUSIONS

This chapter has analyzed the class of pipeline pyramid architectures,
which usually represents a much cheaper alternative to the true hardware pyra­
midal systems described in Chapter 5. After a look at the common features of
the class, a short description of the two main systems has been given.

The basic framework of this class is to compose a two-level system. The
first subsystem acts like the visual periphery in humans, applying simple opera­
tors to a large amount of data, thus forwarding to the higher subsystem the
condensed information extracted. The higher subsystem drives the former sub­
system, which is often considered a "smart sensor," to obtain additional inves­
tigation (in the human analogy this is the role of the inner cortical areas),

Presently, very interesting systems are coming out, often many orders of
magnitude cheaper than the massively parallel systems. Nevertheless, the weak
points of this framework still remain the lack of flexibility in the low-level
stage and the crucial integration between the pictorial processing capability
with the symbolic capacity of the host or high-level subsystem.

REFERENCES

P J Burt and 0 van der Wal, An archItecture for multI-resolutIon, focal, Image analYSIS,
Proc 10th Int Conf Pattern RecogmtIon, AtlantIc CIty, NJ, 1990, pp 305-311

2 E W Kent, M 0 Shnelder, and R Lurrua, PIPE pIpelmed Image processmg engme, J
Parallel Dlstrlb Comput 2,50-78 (1985)

3 0 Orandlund and J ArvIdsson, The GOP Image computer, m Fundamentals In Computer
VISIOn (0 Faugeras, ed), pp 443-458, Cambndge UmvefSlty Press, Cambndge (1983)

4 K Lundgren, D Antonsson, J ArvIdsson, and 0 H Grandlund, OOP, a two stages mIcro­
programmable pIpelmed Image processor, Proc 2nd ScandmavIan Conf Image AnalYSIS, Hel­
smkI, Fmland, 1981, pp 408-414

5 G Grandlund and J ArvIdsson, Computer archItectures for Image processmg, Proc 4nd Scan­
dmavIan Conf Image AnalYSIS, TrondheIm, Norway, 1985

6 P J Burt, C H Anderson, J 0 Smmger, and G van der Wal, A pIpelIne pyramId machme,
m Pyramidal Systems for Computer VlSlon (V Cantom and S LevIaldI, eds), pp 133-152,
Spnnger-VerJag, BerlIn (1986)

70S van der Wal, The Sarnoff pyramId ChIp, Proc Workshop on Computer ArchItectures
for Machme PerceptIon (B ZavIdovIque and P L Wendel, eds), Pans, 1992, pp 69-79

www.manaraa.com

172 Chapter 6

8. P. 1. Burt, Smart sensing in a pyramid vision machine, Proc. IEEE, 76(8), 1006-1014 (1988).
9. C. H. Anderson, P. 1. Burt, and G. van der Wal, Change detection and tracking using pyramid

transform techniques, Proc. SPIE Conf. Intelligent Robots and Computer Vision, 1985, pp.
72-78.

10. P. J. Burt and G. van der Wal, An architecture for multiresolution, focal, image analysis,
Proc. 10th Int. Conf. Pattern Recognition, Atlantic City, Nl, 1990, pp. 305-311.

11. P. 1. Burt and G. van der Wal, Iconic image analysis with the pyramid vision machine, Proc.
Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence, Seattle,
WA, 1987, pp. 137-144.

12. V. Cantoni, K. N. Matthews, P. Burt, H. Freeman, A. Terrano, and G. van der Wal,
CAIPS-the CAIP advanced image processing system, CAIP-TR-072, pp. 1-39, CAIP Cen­
ter, Rutgers University, 1988.

13. S. L. Tanimoto, A hierarchical cellular logic for pyramid computers, 1. Parallel Distrib.
Comput. 1, 105-132 (1984).

14. E. W. Kent and S. L. Tanimoto, Hierarchical cellular logic and the PIPE processor: structural
and functional correspondence, Proc. IEEE Computer Society Workshop on Computer Archi­
tecture for Pattern Analysis and Image Database, 1985, pp. 311-319.

www.manaraa.com

Chapter 7

Simulation of Pyramids on Flat Arrays
and Hypercubes

This chapter reviews different solutions to embed pyramidal processing in mas­
sively parallel systems, such as mesh arrays and hypercubes. The first approach
of using a standard mesh array computer to obtain multiresolution processing
has a particularly high simulation cost for interlevel data exchanges given the
simpler paths available in the mesh. Increasing the connectivity of mesh arrays
by the addition of a few links per PE opens up a number of alternatives. These
are analyzed in terms of regularity of decomposition and fault tolerance. How­
ever, the appropriate use of a switch lattice which interconnects standard PEs
of a mesh array allows us to embed quad pyramids into a highly regular physi­
cal structure.

The hypercube topology can be used in two situations. Either embedding
the pyramid as a set of meshes or directly mapping the nodes without explicitly
reproducing the near-neighbor connectivity within the levels. The former ap­
proach allows interlevel communication by using the properties of reflective
Gray codes. The latter reduces intralevel communication cost, but gives rise to
rather irregular communication patterns in the hypercube dimensions.

7.1. INTRODUCTION

As indicated in previous chapters, pyramid machines already built are still
at a prototype stage. It is therefore no surprise that applications in the real

173

www.manaraa.com

174 Chapter 7

world cannot be run reliably on them. There have therefore been many efforts
to use massively parallel systems with other topologies as if they were pyra­
mids. Since commercially available massively parallel systems fall within the
three topologies of linear, mesh array, and hypercube systems, most work has
been concentrated on them, especially the last two. Indeed, the linear topology
seems too far removed from the bidimensional support on which a pyramid
is built.

Indeed, the problem of transferring a set of parallel algorithms, designed
to run on a pyramid computer, onto a different parallel architecture is an in­
stance of the more general problem of mapping a regular architecture Al onto
another regular architecture A2 . Such a problem, which has been investigated
in many single combinations such as tree embedding in meshes, tree embed­
ding in hypercubes, and so on, has also been addressed in its widest formula­
tion by Stout. I He considers all possible combinations among the most-used
architectures, along with lower and upper bounds in algorithm complexity. The
main reason that motivates such an approach is not so much efficiency as it is
the correctness of the algorithms. Indeed, while the mapping of Al onto A2
generally introduces large overhead, it does guarantee that an algorithm known
to be error proof in Al will be error proof in A2.

There are two aspects that influence efficiency: the mapping itself, which
must be as good as possible to lower any overhead and the structure of the
algorithm. That being designed for the source architecture Al is likely to be far
from the best in the A2. On average, the best possible algorithm for Al will be
considerably less efficient than the best one for A2 , and usually the loss due to
mapping will be large.

Common parameters used to measure the efficiency of the mapping are

• Processor load. The maximum number of processors of Al simulated
by a single processor in A2 (in some cases, the notion of "virtual proc­
essor ratio" is also used for this purpose). This measures both the com­
putation congestion and the memory congestion.

• Expansion. The ratio between the number of processors in A2 and that
in A I. This parameter is not influenced by the mapping strategy, but if
the structures are modular and mapped with a balanced distribution, the
inverse of the processor load results come close to this parameter.

• Link load. The maximum number of communication links in Al
mapped onto a single communication link in A2• This is a measure of
traffic congestion.

• Dilation. The maximum number of communication links in A2 neces­
sary to map a single communication link in A I. This is a measure of

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 175

the maximum delay for simulating data exchanges between a pair of
pyramid nodes (PNs).

While this mapping approach sets a formal basis to the simulation prob­
lem, which is essentially a software task, other considerations motivate a
deeper insight into the architectural issue. There exist proposals to build recon­
figurable parallel architectures2 capable of embedding a few alternative topolog­
ies by properly choosing connectivity links by means of software. This is possi­
bly a viable solution to the mapping problem as well. Furthermore, a few
proposals to increase basic topologies, namely meshes, with extra links on top
of those required by 4- or 8-connectivity are also worth considering.

The remainder of the chapter is split into two sections. The first covers
targeted architectures based on the mesh topology and analyzes both pure soft­
ware simulations and enhanced-reconfigured systems working as pyramids.
The second addresses the hypercube family, for which only simulations have
been proposed.

7.2. PYRAMIDS AND MESHES

The pyramid and mesh topologies are clearly closely related; a pyramid
can be seen as a stack of meshes of edge length decreasing with level. Most
naturally, the mapping of a pyramid architecture onto a mesh computer starts
by first establishing a correspondence between a single level of the pyramid
and the available mesh system, according to the size of the last one. The ways
in which the resources of the mesh are used to establish this correspondence
and the others necessary for the remaining levels are addressed as a software
simulation problem. Increased meshes and reconfigurable meshes, on the other
hand, try to obtain an emulation, even if partial, of the pyramid. This is
achieved by using particular hardware features, notably communication links,
as subsets of the true pyramid.

7.2.1. Simulation of Pyramids on Flat Arrays

There are two approaches to the simulation of the pyramid on a flat array.
The first is based on the concept of distributing the data across the mesh of
PEs in order to preserve adjacency and locality among PNs; the second is based
on distributing the PEs across the data. In what follows, an instance of the
mapping for each approach is described with a quantitative assessment of per­
formances.

www.manaraa.com

176 Chapter 7

7.2.1.1 Compact Simulation

The first proposal of pyramid simulation on flat arrays has been described
in Reeves. 3 This strategy depends heavily on the efficiency of mapping inter­
layer communications on the simpler paths available in the mesh.

In order to map a pyramidal structure which has a K x K base on a flat
array of dimensions N x N, a suitable allocation of the PNs has to be performed
according to the level to which they belong. A PE of the mesh can carry out
the functions of a set of PNs, which are mapped in its own local memory. In
general, PNs belonging to levels whose dimensions are less than N x N are
mapped into a single memory layer. PNs which belong to the level of NxN
dimension are mapped into a second memory layer, and PNs of the lower levels
are mapped in several layers, as explained later. If one considers a k-level
pyramid (k= log2K + 1), where n = log2 N, three cases can be considered: (i)
k:5. n, all the pyramid levels are allocated in one memory layer with some idle
PEs; (ii) k = n + 1, two memory layers are necessary, one for the pyramid base
only and a second for the remaining k - 1 levels; (iii) k> n + 1, the n upper
levels are allocated in just one memory layer, while the remaining k - n levels
are allocated in successive memory layers, whose total number M is equal to

(7.1)

For example, if a 16 x 16 pyramid (k = 5) is simulated on a flat array of
8 x 8 processors (N = 8, n = 3), the three topmost levels (from the apex) are
mapped into the same memory layer, while levels 3 and 4 (for a total of 320
PNs) are mapped in five successive memory layers, according to Eq. (7.1).
Figure 7.1 shows an example of the mapping of such a pyramid on an 8 x 8
mesh.

This method has considerable problems in terms of memory requirements
of the PEs as the number of levels of the pyramid increases. Moreover, the
load of the PEs in simulating the PNs is unevenly distributed in the mesh.

Data movements are performed in different ways according to the level
of the pyramid in which they take place. For the topmost n levels, vertical
communications toward lower levels are implemented by a bidimensional per­
fect shuffle and by a reverse shuffle in the opposite direction. For horizontal
data movements, the shift technique is adopted.

For what concerns the other k-n levels, two mapping strategies can be
followed: the former has been called the crinkled storage format 3 and stores a
complete subpyramid of k-n levels in each PE. The latter is based on mosaick­
ing lower levels of the pyramid by square tessels of dimensions which match

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 177

Memory
layers

2 ---1 -0 -- Pyramids

Figure 7.1. Embedding of a five­
level quad pyramid into an 8 x 8
mesh. Note that the pyramid base is
mapped on 22(k-n-l) memory layers
of the mesh. PE's L:.r.LL:t.~~~t::t

IleveJs

3

~

the mesh array. The former solution allows local operation for vertical and
horizontal exchanges inside the subpyramids, but prevents using the parallel
near-neighbor access. The latter, however, maintains this parallel access capa­
bility partially, but to the detriment of the link load, which increases roughly
by a factor of M. For this reason we will subsequently only refer to the crin­
kled solution.

In crinkled mapping, the data shifts are not useful for interlevel ex­
changes. This is because data communication in these cases is performed by
local accesses in the memory of the PEs. Instead, exchanges among siblings
are local for horizontal communications, while general near-neighbor access
involves inter-PE communications.

In the compact simulation, for the higher levels, vertical interchanges are
not implemented in an efficient way. This is due to the shuffle operations over­
head, whose complexity is O(N). On the other hand, hardware topology is
well exploited in intraplane communications, thanks to lateral near-neighbor
connectivity. Vice versa, vertical communications are relatively convenient, for
the base and the lower levels, but horizontal communications cannot benefit
from the broadcasting-gating solution.

In Reeves,3 the time efficiency of the simulation of a pyramid on a flat
array is estimated as a function of the ratio between the pyramid base width
and the flat array size. The comparison with a true hardware pyramid outlines
the fact that pyramidal algorithms can be implemented on a flat array with
satisfactory results in particular cases, such as multiresolution operations (e.g.,
pyramid construction) if integer or real data are used. This is because the shuf-

www.manaraa.com

178 Chapter 7

fle operations can be implemented by pipelined data transmissions, and the
resulting overhead is then distributed over a number of bits. All in all, the
pyramidal structure is superior to the flat one, especially if the computation is
essentially based on hierarchical Boolean near-neighborhood processes.

Considering the four performance parameters introduced in Section 7.1,
closed-form formulas for the mapping of a complete pyramid have been subse­
quently given. They are evaluated for three cases of 8- and lO-level quad pyra­
mids simulated by a flat array of 128 x 128 PEs (such as the MPP) and for a
reduced pyramid implementation consisting of only three levels (from the base
to the level which matches the mesh array)

• Processor load is 1 +M [see Eq. (7.1)], which corresponds to 2,22,
21, respectively, in the case studies.

• Expansion is 3N2/(4K2 - 1) and 3N4/(4K2N2 - 4K2) for the complete and
truncated cases, respectively. These correspond in the case studies to approxi­
mately 0.75 and 0.0468 in the last two cases (and the inverse ratio is respec­
tively 1.33, 21.33). In these cases it is quite close to the inverse of the proces­
sor load, given that the simulation load is almost balanced on the array
(obviously the higher the processor load value the closer it is to the inverse of
the expansion parameter).

• Link load is 2k - n + 2n + 1 at the common edge between planes n - 1 and
n - 2, in which horizontal communications of the subpyramid (k-n levels, see
above) are superimposed on the vertical communications between planes n with
n - 1 and n - 1 with n - 2. In the case studies this corresponds to a load of 258,
264, and 7, respectively (in the first two cases 256 is due to the shuffle opera­
tion used to implement vertical communications in the upper levels).

• Dilation is N for vertical communications between planes n with n - 1.
Indeed the shuffle operation requires N near-neighbor exchanges in this case
(half in each direction). In the first two case studies the dilation is 128, while
for the truncated pyramid the value is 1.

7.2.1.2. Distributed Simulation

A second mapping of a quad pyramid into a mesh architecture is obtained
with a three-step procedure as follows4:

1. by flattening the three-dimensional topology of the pyramid (a nonpla­
nar graph) into the planar graph embedding the base of the pyramid;

2. by slicing the degenerate pyramid thus obtained into submeshes, each
matching the target mesh architecture;

3. by stacking each such submesh onto the target mesh without folding
or rotations.

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 179

The resulting solution is quite different from the compact pyramid simula­
tion case. The distributed solution loses adjacency in levels above the base.
The exchanges between these layers improve partially with the distribution of
higher-level nodes.

The first step is a recursive procedure which starts from the planar graph
embedding the base of the pyramid. Within each 2 x 2 block of sibling nodes,
one node is chosen to act as the parent. Its link with the parent node is broken
while the remaining three are flattened to match the links between siblings. The
process of contracting the graph terminates when the apex of the pyramid is
collapsed into the comer node of the base graph. There are four possible final
mappings, selected on the basis of which node acts as the parent within each
2 x 2 block.

Figure 7.2 shows the mapping of a four-level quad pyramid into an 8 x 8
mesh array. The pyramid graph has been flattened recursively toward the top
left-hand comer. In this picture each processor of the mesh is shown as a
number, indicating the maximum level it belongs to (note that the levels of the
pyramid are numbered from the vertex downward to the base, which has the
label 0). In addition to this level, a single processor belongs also to all inferior
levels (e.g., levels 0 and 1 for a processor labeled 2). This solution distributes
the PEs over the pyramid graph and places the highest computational load in
the single PE belonging to all levels; the quantitative assessment through the
chosen descriptive parameters reflects this situation.

Data movements among logically neighboring nodes are time consuming

2

Figure 7.2. Embedding of a four-level pyra­
mid on an 8 x 8 mesh array obtained by distrib- 5
uting the PNs. The labels represent the maxi­
mum levels that the PEs are working for, with 6

the numbering scheme going from 0 (base) to
7 3 (apex).

o 234567

www.manaraa.com

180 Chapter 7

for horizontal and, even relatively, for vertical exchanges. Indeed, physical
contiguity of PEs is optimal only for lateral exchanges in the base of the pyra­
mid, when it matches the dimensions of the mesh (k = n + 1) or when it is
smaller than this dimension (k< n + 1). In this latter case, at most only one
quarter of the mesh is used. In these cases, neighboring nodes in the upper
levels are located on PEs at a distance equal to 2h - 1, h being the label of the
level, according to the numbering scheme just introduced. The situation is just
a little worse than average, when the pyramid base does not fit completely
within the mesh. The k-n topmost levels of the pyramid are all mapped in the
single comer PE and thus benefit both from vertical and from horizontal ex­
changes, which become local memory accesses. Moreover, each PE stores the
nodes of the "home" quadrant for all remaining levels, as well as the nodes
located in the same level at a distance multiple of 2n for each coordinate.
Horizontal communications therefore have a maximum cost in these levels,
equal to 2n - 1. Vertical ones have a maximum cost of 22n - 2, which is the cost
to send data from the level-n nodes (all mapped in the same comer PE) to the
child located on the diagonal direction.

The quantitative analysis is carried out taking into consideration the same
cases of 8- and lO-level quad pyramids respectively (in this second case also
with a truncated solution). These are simulated by a flat array of 128 x 128
PEs, as has been done for the compact pyramid analysis.

• Processor load is (n+t) 4k - n - 1 _!, which corresponds to 8 and 133,
respectively, for the complete pyramid case studies, while this last case is re­
duced to 63 for the simulation of the first three levels (from 512x512 to
128 x 128).

• Expansion as for the previous simulation strategy is 3N2/(4K2 - 1) and
3N4J(4K2N2 - 4K2) for the complete and truncated cases, respectively. These
correspond in the case studies to approximately 0.75 and 0.0468 (and the in­
verse ratio is respectively 1.33, 21.33). In all cases it is too far from the inverse
of the processor load, given that the simulation load is concentrated in the
vertex location (or in the PEs of highest level).

• Link load for the complete pyramid is 2n 4 k - n - I in the vertex comer
in which horizontal communications of the lowest n levels are superimposed
onto the vertical communications between the same planes (obviously the com­
munications between nodes of the highest subpyramid of k-n levels are solved
in local memory). In the truncated simulation the maximums are localized be­
tween the highest-level PEs and their near neighbors. For the case studies the
values are, respectively, 14 and 224 in the complete case and 147 in the trun­
cated solution.

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 181

• Dilation is N in the complete cases, as for the compact simulation, for
vertical communications between planes nand n - I, in which N near-neighbor
exchanges are required. For both case studies, dilation is 128. However, for
the truncated solution, this parameter is reduced to 4!

7.2.2. Augmented Flat Arrays

The quantitative analysis carried out on the simulation of pyramid on a
mesh architecture has highlighted different sources of overhead. According to
the intended main use of pyramid computations, either processor load or link
load can become a serious bottleneck in using the mesh and should be reduced.
We will look at a few proposals for enhancing the basic structure of the mesh
with minimal hardware additions, aimed at lowering either parameter.

A method has been proposed by Duff5 for obtaining a more effective
resolution reduction in a flat array by adding an extra connection to a subset of
the PEs of the array. This proposal tries to reduce both link load and dilation.
However, it does not improve processor load.

In a flat array with 4-connectivity the reduction process can be accom­
plished by the following means: one parallel shift in the horizontal direction,
plus an associative operation and a parallel shift in the vertical direction and a
further associative operation. By these means the pyramid data structure is built
on top of the base array. However, the resulting pixels will now be distributed
across the array and will need to be compacted into a contiguous array in order
to reestablish local neighbor connectivity (reverse shuffle). This can be
achieved by means of a series of masking and shift operations. This is by far
too slow to perform in an array with conventional nearest-neighbor connec­
tivity.

As a possible solution, it has been suggested to add a connection to the
processor in the array position (p, q) to the processor with coordinates (2p,
2q), for all integer values of p and q (see Figure 7.3a). These extra connections
allow us to concentrate data with just one parallel shift.

Although it is clear that this solution can be an efficient means of per­
forming typical pyramidal operations in a flat array, some critical issues need
to be pointed out. A first objection regards the irregular structure of the re­
sulting array, with connections of different lengths, introducing a specialization
of the processors and resulting integration problems. In Figure 7. 3b an im­
provement is shown. In this solution the horizontal and vertical regularities are
gained at the expense of an increase of the dilation parameter. Every processor
with coordinates (p, q) is connected to the processors in the array position (2p,

www.manaraa.com

182

o

2

3

4

5

6

b 7

o

2

3

4

5

6

7
a

0234567

0234567

Chapter 7

Figure 7.3. Embedding of a four-level
pyramid on an 8 x 8 mesh array obtained by
compacting the PNs. In (a) just one link is
introduced in order to reduce link load and
dilation. In (b) a more regular structure is
obtained by breaking the extra connection
into horizontal and vertical paths (a maxi­
mum of two extra links per node).

q) and (p. 2q); in this way the unit path of the solution shown in Figure 7.3a
is split into horizontal and vertical components. As can be seen, all rows (col­
umns) are equal concerning the connections along each row (column).

Moreover, every processor of a given level also belongs to all inferior
levels, placing on it the burden of larger quantities of data as the level in­
creases. This is especially true for the vertex of the pyramid, corresponding to
the processor in the top left comer. A third problem, also derived from the
specialization of the processors, is that of fault tolerance, which seems to be
very poor in this architecture, due to the fixed structure of the interconnections.

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 183

However, both these solutions do not show a satisfying degree of modular­
ity, due to pinout problems. Indeed, for a chip containing P x P processors,
O(p2) external connections must be provided.

The usual quantitative analysis is carried out considering the same cases
of 8- and lO-level quad pyramids simulated by an augmented flat array of
128 x 128 PEs, as for the compact pyramid analysis. In particular, the crinkled
solution is considered (since no advantage is achieved because the mosaicking
operation does not overlap the extra paths). Moreover, no reports about the
truncated case are given. Indeed, for this case the solution coincides with the
given compact simulation. Both the (a) and (b) solutions are considered, even
if they have the same performance for the processor load, expansion, and link
load parameters:

• Processor load is n + M, which corresponds to 8 and 28, respectively,
for the complete pyramid case studies.

• Expansion, as for the previous simulation strategy, is 3N2J(4K2 - 1)
corresponding for the case studies to 0.75 and 0.0468 (and the inverse ratio is
respectively 1.33, 21.33).

• Link load is 3n - 2 + 2k - n in the vertex comer in which horizontal com­
munications of the n higher levels are superimposed onto the 2n vertical com­
munications between the same levels (obviously all the communications be­
tween nodes of the lowest subpyramid of k-n levels are solved in local memory)
and onto the lateral communications of the k-n subpyramid. For the case studies
the values are, respectively, 21 and 27.

• Dilation in each p,q node is equal to 3 and 4 for the (a) and (b) solu­
tions, respectively.

7.2.3. Reconfigurable Meshes Emulating Pyramids

Pyramids have also been simulated with reconfigurable massively parallel
meshes. In these cases no extra links have been introduced, and exchanges
between distant PEs exploit the reconfiguration capability of the array. Two
proposals that distribute the pyramid PNs spatially and functionally in reconfi­
gurable meshes will be described. In the first, the PE array is mixed with a
switch lattice which creates a logical neighborhood out of PEs physically dis­
tributed in the mesh. This first solution has been called the fiat pyramidal archi­
tecture. 6• 7 The second solution, proposed by Maresca and Li,8, 9 exploits a
restricted local autonomy of PEs in setting up near-neighbor connections. In
the first case the PNs mapping is static for all levels above the base. In the

www.manaraa.com

184 Chapter 7

second case the role of the PEs changes dynamically during the execution,
setting up one level at a time.

7.2.3.1. The Flat Pyramidal Architecture

The embedding of a four-level quad pyramid in a cellular array of 8 x 8
PEs is shown in Figure 7.4, where each label (+ , 1,2,3 or 4) symbolizes a
PE. It is a regular and recursive structure and is easily enlarged. That is, the
apex of a five level pyramid (labeled 4) will be located in the bottom-right
position of Figure 7.4, while the array is replicated four times.

Each PE in the array performs the functions of at the most two PNs, each
belonging to a different plane (grids), the base plane (level 0) and a second,
higher-level, one. In Figure 7.4, numeric labels specify the higher level, while
the symbol + identifies nodes belonging to the base only. PEs working on two
levels are (N2 -1)/3. In the following, let us indicate this set of PEs as Y and
the complete set of PEs as X, while W will be the set X - Y.

If (0, 0) are the coordinates of the top-left element in the array, a PE
situated in position (i, j) belongs to the set Y if and only if in the binary
representation of both i + 1 and j + 1 the least significant nonzero bits occupy
the same position h (beginning the count from the rightmost bit). In this case,
h is the level to which the PE belongs. For example, the PE with coordinates
(3,6) (then i+ 1, j+ 1; in binary codes, ... 0100 and ... 0111) will be a
member of the set W because the positions of the least significant nonzero bits
are unmatched. The PE in (5, 1), however, will belong to level 2, since the
least significant nonzero bits in both the incremented binary codes ... 0110
and ... 0010 are located in the second position.

Conversely, the coordinates in the mesh array of the PN (h, i, j), which
belongs to level h with 1 LEh:::; n, are given by the expressions

[(2i+1)2h - 1-l, (2j+1)2h - 1 -l] 'Vi,j, 0:::;i,j<2n - h (7.2)

Furthermore, the generic PE of the set Y with position (i, j) is the apex of
a subpyramid whose nodes are mapped to PEs with coordinates (p, q), where

(7.3)

Regarding connections, each element of the mesh array (that are all sup­
posed to be identical) is connected with its eight neighbors by a structure

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes

Figure 7.4. Implementation of a four-level
virtual pyramid on an 8 x 8 mesh array featur­
ing 8-connectivity. The numerical labels iden­
tify the subset of PEs working on two differ­
ent levels. PEs labeled with + preserve the
parallel access capability to near neighbors
for PNs of all higher levels. Note that to sim­
plify the drawing only the 4-connectivity of
the horizontal modality is shown.

185

(switch lattice) that will be described later. This 8-connectivity can be directly
exploited only for the base of the pyramid, but is needed for interplane commu­
nications.

A basic feature in some fine-grained machines is the parallel access under
4-connectivity to the nearest neighbors of each element. This is preserved on
all planes of the logical pyramid. If we consider the generic plane h > 0 (whose
PEs belong to the set y), the physical distance between two neighbors is 2h
(see Figure 7.4). Adjacency, however, may be saved, implementing a short
circuit between ports east-west and north-south in the PEs of the set W. This
situation is depicted in Figure 7.4, where the short-circuited elements (PEs of
set W) are properly represented by the symbol +. As can be observed, hori­
zontal interconnections on different levels (h > 0) exploit disjointed paths.

When operating on the base, at maximum resolution, only a fully SIMD
operational mode can be used on the flat array with 8-connectivity. Otherwise,
limiting all higher levels to 4-connectivity, given that the grids are disjoint, a
Multi-SIMD operational mode is introduced into the pyramid (each grid above
the base can operate autonomously in SIMD mode).

Regarding "vertical" interprocessor communications, three cases can be
identified.

1. Communications between parents of level I and children of level 0
(base) are immediate and exploit 8-connectivity in SIMD mode. Each PE of
level 1 communicates with three children, situated to the east, to the southeast,
and to the south, while the fourth child is simulated by the PE itself. For
example, in the top left 2 x 2 subarray of Figure 7.4,

www.manaraa.com

186

1+
+2

Chapter 7

the four elements are the children of the PE labeled 1.
2. Vertical data exchanges between levels 1 and 2 exploit diagonal links

from northeast to southwest, and vice versa, and from northwest to southeast,
and vice versa.

3. Communications between levels hand h+ 1, with h~2, are finally
accomplished by short-circuiting PEs belonging to level h -1 and lower levels
down to level 1 along the northeast to southwest and southeast to northwest
directions. In Figure 7.4, for instance, the third level element in position (3, 3)
can send data to its northwestern child with coordinates (1, 1) through the
element labeled I, situated in (2, 2). At the same time, the PE (3, 3) can also
broadcast to its other children (1, 5), (5, 5), and (5, 1) in the same way.

No further links are required between nonadjacent PEs. We stress the high
simplification obtained by this logical pyramid in inter- and intrachip and board
interconnections, in comparison with other physical or simulated pyramidal so­
lutions. Lastly, note that fault tolerance mechanisms are also simplified and
will be described in detail later.

a. Some Notes about Reconfiguration. The proposed solution can be con­
sidered as a partially reconfigurable SIMD fine-grained array. Reconfiguration
is achieved through a limited implementation of connection autonomy. 10 In­
deed, the interconnectivity of the flat array described here gives rise to three
architectures out of an N x N physical arrangement of PEs:

1. A single 8-connected mesh
2. n 4-connected meshes
3. A quad tree

NxNPEs
2n - h x 2n - h PEs with 1-s;, h -s;, n
1 +n levels

Note that in the third case at most two adjacent levels of the tree can
exchange data at the same time. Each configuration is mutually exclusive of
the other two. The pattern required to build each configuration can be chosen
from among three prewired modes that are available at each node of the physi­
cal structure. Actual settings depend on the intended logical position of the PE
within the structure [that is, on its (i, j) coordinates] but cannot be altered in
an arbitrary way.

There is, however, a second, quite different form of reconfiguration avail­
able in this system. Since the role played by each PE can be changed, although
in limited ways, the embedding of the 4-array tree is completely arbitrary. Any
of the PEs can be selected to act as the root of the tree. In other words, the
apex of the pyramid can be relocated anywhere on the physical array. Thus, it

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 187

is possible to focus on an area of the image wherever interest operators and
planning strategies so require. The pyramid is "virtual," and its embedding in
the underlying physical mesh array is not committed to defined locations but
can be varied with considerable freedom.

In order to maintain the near-neighbor parallel access capability, the map­
ping of nodes onto PEs must follow a block-partitioning distribution whenever
the virtual pyramid is larger than the physical array (i.e., in this case the crin­
kled format as described in Section 7.2.1.1 is not used, but the image-to-PE
distribution is adopted). In detail, either mosaicking or folding can be used
(stacking the blocks onto each other in the former case directly, in the latter by
rowand/or column transposition). The actual solution depends on the available
hardware connectivity on the array borders. While folding is always possible,
mosaicking is more convenient when the array has a wrap-around capability.
Furthermore, nodes belonging to the topmost section of the pyramid, which are
mapped in the bottom-right comer PE, can be redistributed following the vir­
tual strategy in the middle of the array.

h. Implementation Notes. According to the criteria so far illustrated, the
project of a real machine has been defined under the name of PAPIA 27 by a
group of Italian researchers. The need to reconfigure the PE array according to
different operating modes has motivated the introduction of a switch lattice-a
regular structure consisting of reconfigurable switches driven by particular con­
trollines. These switches are regularly connected to the grid of PEs, which are
not directly linked.

Each reconfigurable switch may be characterized by four parameters: 11

1. The number m of lines entering the switch from each direction (data
path width)

2. The total number d of paths which enter and exit from the switch
(degree)

3. The number c of possible configurations for the switch (configuration
settings)

4. The number g of different paths that the switch can simultaneously
connect (crossover capability)

The adopted switch-lattice solution, which reduces the number of physical
connections of each PE (and consequently of each chip), is illustrated in Figure
7.5. All switches occupy a central position amid four PEs, each connected with
the switch by two one-directional links. The representative parameters of the
switches used in this solution are m = 1, d = 8, c = 3, g = 4.

The three configuration settings are detailed in Figure 7.5a, b, and c. The

www.manaraa.com

188

a

b

Chapter 7

Figure 7.5. Layout of PEs and switches dis­
tribution in PAPIA2 (PEs are represented by

C squares, the switches by circles): (a) the active
links for the central PE of a generic 3 x 3 subar­
ray are detailed in the case of base operations;
(b) setup of the switches for the horizontal op­
erations; (c) switch setup for vertical opera­
tions.

first is exploited when operating on the base of the pyramid. Note that, 8-
connectivity is achieved by partially distributing the gate logic described in
Section 5.2.2.1 among the switches. The second setting allows horizontal con­
nections among PEs belonging to levels above the base (with 4-connectivity).
The third accomplishes vertical connections between couples of adjacent
planes, except planes 0-1.

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 189

c. Fault Tolerance in PAPIA 2. Among the alternative strategies for
achieving fault tolerance in fine-grained mesh arrays,12 a simple, yet popular,
strategy for arrays of homogeneous PEs provides some spare rows or columns
to be used to replace faulty ones. 13 When special diagnostic routines detect
damaged elements, the system must be reconfigured according to a specific al­
gorithm.

In PAPIA 2, if a PE is found to be faulty, two adjacent columns are
disabled (the one containing the faulty processor and the previous or following
column), while two spare columns are activated on the right side of the array.
Due to the implementation characteristics of the system, disabling two columns
allows array reorganization to take place without modifying the way in which
the array works (see Figure 7.6). In order to grant communications between
adjacent PEs, indeed, a special short-circuiting hardware is included in each
PE and switch element. This is activated by a flag bit.

Figure 7.6. Fault management in PAPIA 2. A
columns pair substitution for a faulty PE: (a) spe­
cial local detour required in all PEs of the substi­
tuted column pair to reconfigure the array; simpli­
fied overall setup after a fault recovery in the
horizontal (b) and vertical modalities (c).

.,
/

www.manaraa.com

190 Chapter 7

When the value of this flag is set, three actions are performed on the pair
of columns to be replaced:

1. The PEs are disabled.
2. The PEs and the switch elements are short circuited as shown in Fig­

ure 7.6.
3. A special liD register in each PE (which forms a shift register together

with the analogous registers in the PEs of the same row) is short cir­
cuited.

The settings of these flags may be provided by a mask which is loaded on
the whole array (spare columns included).

d. Simulation Performance Parameters. The usual quantitative analysis is
carried out for 8- and lO-level virtual quad pyramids embedded on a flat array
of 128 x 128 PEs. For simulation of the larger pyramid the truncated and com­
plete cases are considered. Regarding the mismatch between the PE array and
the pyramid base sizes, the solution adopted is described in Section 7.2.3.1a
as follows.

o Processor load is equal to 2, 2 + 2k - n + 1, and 2k - n+ 1 for the 8-level
pyramid, lO-level complete pyramid, and lO-level truncated pyramid, respec­
tively, with values of 18 and 16 for the latter two.

• Expansion, as for the previous simulation strategy, is 3N2/(4K2 -1) and
3N4/(4K2N2-4K2) for the complete and truncated cases, respectively. These
correspond in the case studies to approximately 0.75 and 0.0468 (and the in­
verse ratio is respectively 1.33, 21.33).

o Link load in the diagonal link in the bottom-right quadrant has a value
of n, n2k - n + 1+k-n+l, and n2k - n + 1, respectively. For the case studies the
values are, respectively, 7, 116, and 112.

o Dilation in vertical communications is equal to N14, NI2, and N12, re­
spectively.

7.2.3.2. Emulating Pyramids in the Polymorphic Torus

The polymorphic torus architectureS, 9 is a reconfigurable system based on
an array of PEs much like the basic mesh. The structure of the PEs is basically
standard, as far as processing capabilities are concerned. The polymorphic to­
rus is designed as a massively parallel system and adopts a bit-serial architec­
ture at PE level. Reconfigurability is obtained through a dual interconnection
scheme: a physical network (PNET) and an internal network (INET).

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 191

The PNET is actually a 4-connected, N X N mesh, augmented with to­
ruslike and/or spiral-like connections at the borders of the array. A PE is lo­
cated at each junction of the physical mesh, which is interconnected to the
PNET through the INET. At each PE, the INET is an internal set of connec­
tions among the four ports of the corresponding PNET node. In its most general
formulation, the INET node is a complete graph of the four connections (east,
south, west, north) of the PNET node.

The novel feature of the system rests with the level of autonomy available
at each PE. Within the classes of processor autonomy defined in Section
5.2.2.4 for SIMD systems, the polymorphic torus supports "connection auton­
omy" as well as the usual "operation autonomy." Indeed, while the physical
network is fixed, the internal one is programmable by loading each INET node
with proper configuration settings. The specification of these settings can be
described through the interconnection function SHORTPORT {PI},{P2}" .. ,
where {PI}' {P2}' ... , are the set of connections in the INET that are tied
together. For example, the effect of SHORTPORT {N ,E} is to directly connect
the north and east ports, whereas SHORTPORT {N,S}, {W,E} creates a cross­
over function that bypasses the PE. Since the settings of the INET nodes can
be established locally, this architecture allows us to embed both regular and
irregular interconnection patterns among the PEs.

The embedding of various topologies onto the polymorphic torus eventu­
ally results in programming the INET at each PE. The approach can be dy­
namic because each PE performs the functions of possibly more nodes of the
target architecture-that is, not only on the basis of its PNET address but also
on the basis of the time. The embedding is said to be processor dependent if
the interconnection function of the INET uses the PE address and time only as
arguments. The embedding is data dependent if the function takes any data
available in the local memory of the PE as its argument, possibly due to the
outcome of some previous operation.

A prototype realization of the polymorphic torus concept is YUPPIE
(Yorktown ultra parallel polymorphic image engine), described in detail in Ref.
9. In fact, only a restricted subset of the shortporting capabilities of the INET
is implemented in YUPPIE. This does not in any way influence the embedding
considered here.

With regard to pyramid simulation, the interconnection graph embedded
through the INET is regular and preconfigurable. No dependence on local data
is necessary except for the address of the PE. The mapping proposed in Ref. 8
for the quad pyramid produces the PN distribution shown in Figure 7.2. In this
embedding an important role is played by the shortporting capability, which

www.manaraa.com

192 Chapter 7

substantially reduces dilation. Horizontal communications have dilation 1, hier­
archical communications, due to the city-block transmission modality, have
dilation 2. The other simulation's performance parameters remain unchanged.

7.3. PYRAMIDS AND HYPERCUBES

A second class of architecture which is becoming more and more popular
is that of hypercubes. Since the first proposal by Pease,14 the family of hyper­
cubes from a topological viewpoint has been investigated in depth in the last
two decades. The Boolean n-cube or hypercube ls can be defined as follows:
for n an integer, n 2: 0, the n-dimensional hypercube Hn consists of 2n nodes
each labeled with an n-bit number. Two nodes are connected if and only if
their binary labels differ in only one bit.

In the following, the embedding of pyramids onto this topology is ana­
lyzed on a theoretical basis and discussed in some detail for a family of real
system (the Connection Machine models CMl and CM2).16

A family of embeddings of pyramids onto hypercubes tackles this problem
by considering the pyramid as a stack of meshes using the known results for
mesh embedding into the hypercube. A central role in all such solutions is
played by the reflexive Gray codes. Following the notation of Stout,17 let Gd

be a Gray code for integers 0-2d-l: the recursive definition of Gd+ 1 from Gd

applies the reflexive property, so Gd+l(n)=OGd(n) if 0::5n<2d and
Gd+ I(n) = IGd(2d+ 1_ 1- n) if 2d::5 n < 2d+ I.

Let us now consider the restricted problem of mapping a bidimensional,
square mesh of M x M nodes into an hypercube which has the same number of
PEs, PE (i, j) being the coordinates of a generic node for 0::5 i, j::5 2m - 1 ,
m = log2 M. The target hypercube will be H2m' which thus has 22m PEs. The
label of the PE which maps node (i, j) can be obtained either by collating Gm(i)
with GmU), in a collated gray code, denoted by CGm(i, j), or by shuffling
the bits of Gm(i) with those of Gm(j) in the shuffled Gray code, denoted by
SGm(i, j):

Gm(i) = im-lim-2'''io
Gm(j) = jm- dm-2' "jo
CGm(i,]}= im-lim-2'''i~m- dm-2'''jO
SGm(i,j) = im- dm-lim-Jm-2'''i~o

collated Gray code
shuffled Gray code

(7.4)

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes

Table 7.1. Two mappings derived from
Eqs. (7.4).

i\j 00 01 11 10

00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

Collated Gray Code

i\j 00 01 11 10

00 0000 0001 0101 0100

01 0010 0011 0111 0110

11 1010 1011 1111 1110

10 1000 1001 1101 1100

Shuffled Gray Code

193

The two mappings derived from Eqs. (7.4) are shown in Table 7.1 for
m = 2. As expected, owing to the properties of the chosen code, in both cases,
neighboring nodes in the mesh are mapped to PEs whose labels differ by 1.
Extending the mapping to pyramids basically involves the use of either code to
map a single level of the pyramid in a one-to-one fashion with the targeted
hypercube and then including levels below and above.

Alternative solutions, which do not rely on the mesh embedding, are also
possible. These are analyzed in Section 7.3.2. Independent of the chosen ap­
proach, the central issue in the embedding of pyramids is that of devising a
scheme where the neighborhood of a pyramid node is mapped to PEs that are
as close as possible, even though not all adjacent. Indeed, it is well known that
the basic pyramid cycle, which consists of a node and two children, can never
be mapped with dilation 1 onto any cycle in a hypercube which always has an
even number of PEs.

www.manaraa.com

194 Chapter 7

7.3.1. Mesh-Based Embeddings

The first embedding of pyramids into hypercubes was proposed by Stout17

according to the use of the collated Gray code. The first proposed mapping is
defined as follows.

Let Nj = 2d be the number of PEs in hypercube Hd and K X K the dimen­
sion of the base of a pyramid of k = 1 + log2 K levels (levels in the pyramid
have increasing labels, starting from 0 at the base and reaching k-l at the
vertex). The first case considered is when the number of PEs available is
smaller than the number of nodes in the base of the pyramid, that is, N j

< 22(k- I). The mapping associates on a one-to-one basis each pyramid node of
level k - I - d/2, which consists of an array of 2dl2 X 2dl2 elements, with each
PE in the hypercube. Moreover, the crinkled format is used to store bigger
levels of the pyramid, so a PE maps the complete subpyramid of base 2k-I-dI2

X 2k-I-dI2, consisting therefore of k - d/2 levels. By denoting a PN of level h.

located at position i. j in the corresponding mesh, with a triplet (h, i, j), the
following mapping of the pyramid coordinates to the hypercube address results:

CGd(Li 2-(k-I-dI2-h)J, Li 2-(k-I-dI2-h)J),

0:5 i, j < 2k- 1- h, 0:5 h:5 k-l- d/2

(7.5)

The mapping of nodes of higher levels is defined by observing that only
one quarter of the PEs is used for each successive level. This quarter can be
selected on the basis of a fixed value of the last bit of the indexes i and j in
Gray code (e.g., the last digit of the associated Gray code 0). The PEs where
both digits take on that value are chosen as the parents in the next level for
each 2 X 2 subarray. This selection process is carried out recursively on succes­
sive levels, with larger blocks and longer sequences of least significant coinci­
dent digits. Denoting by ot a string of t occurrences of zeros, the mapping of
PN (h, i, j) is

G (·)Oh-(k-I-dI2)G (·)Oh-(k-I-dI2) k-I-h I k-I-hJ , (7.6)
O:5i, j<2k - I -\ k-l-d/2<h:5k-l

Table 7.2 shows the resulting mapping for the case k=n+ 1 =4. The
properties of this embedding in terms of data movement are quite evident.

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 195

Table 7.2. The resulting mapping for the case k = n + 1 = 4.

tV 000 001 011 010 110 III 101 100

000 000000 000001 000011 000010 000110 000111 000101 000100

001 001000 001001 001011 001010 001110 001111 001101 001100

011 011000 011001 011011 011010 011110 011111 011101 011100

010 010000 010001 010011 010010 010110 0I0111 010101 010100

110 110000 110001 110011 110010 110110 11O111 110101 110100

III 111000 111001 111011 111010 111110 111111 111101 111100

101 101000 101001 101011 101010 101110 101111 101101 101100

100 100000 100001 100011 100010 100110 100111 100101 100100

a

000 001 011 010 110 III 101 100

000 3 0 0 I 1 0 0 2

001 0 0 0 0 0 0 0 0

011 0 0 0 0 0 0 0 0

010 I 0 0 I I 0 0 I

110 I 0 0 I I 0 0 I

111 0 0 0 0 0 0 0 0

101 0 0 0 0 0 0 0 0

100 2 0 0 I I 0 0 2

b

www.manaraa.com

196 Chapter 7

Pyramid levels stored in the crinkled format resolve all vertical near-neighbor
exchanges and most of the horizontal ones locally in the memory of the PE to
which they are mapped. As noted, no possible efficient propagation modality
is available with the hypercube, so the emphasis is on obtaining a reduced
dilation. Indeed, dilation is very low, since the mapping of pyramid levels
above level k - 1 - d/2 keeps neighboring nodes on PEs that are as close as
possible. In particular, the 4-connectivity within each level is preserved, and
hierarchical connections have a maximum dilation of two links.

The second case to be considered is when the number of PEs of the hyper­
cube is larger than the number of PNs in the base of the pyramid. Since the
PNs of levels above the base are one third of those in the base, the hypercube
Hd has at least twice as many PEs as PNs in the base of the pyramid; that is,
N;= 2d? 22k - 1 [i.e., the expansion parameter is 3 . 2d/(22k+ I-I)].

Let us consider the case d = 2k - 1. The suggested embedding treats the
base of the pyramid as a mesh, perfectly embedded in either half of the hyper­
cube. The remaining levels are mapped in the other half by mapping the parents
"along the dimensions of the hypercube"l? (see Table 7.3). Nodes belonging
to the first level above the base are mapped in PEs of the second half of the
hypercube that are connected to PEs in the first half acting as parents according
to the embedding represented in Table 7.2b. That is, candidate parents have
been relocated by using one dimension of the hypercube. The process could be
iterated for the remaining levels if the hypercube had any other unused dimen­
sions.

Alternatively, note that all PEs working as parents have a least significant
digit equal to 0 in their address. The least significant digit is treated as the next
dimension and is used accordingly. With reference to Table 7.3, the parent of
the four top-rightmost nodes in levell, labeled 2 and mapped to PE 000100 in
H6 (see Table 7.2), is now mapped to PE 1000101. This mapping gives the
least possible processor load; in fact each PE simulates at most one PN. Given
that now three hops are necessary for at least one of the children to have its
value transmitted to the parent, dilation increases to 3. The load of the links,
therefore, drops considerably and attains its minimum of 3, as can easily be
seen.

7.3.1.1. Shuffled Gray Code Embeddings

The mappings so far described are based on the collated Gray code. For a
pyramid, the alternative use of a shuffled Gray code leads to the following
arrangements of pyramid nodes to PEs:

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 197

Table 7.3.

000 001 011 010 110 111 101 100

000 0 0 0 0 0 0 0
I

001 0 0 0 0 0 0 0 0

011 0 0 0 0 0 0 0 0

010 0 0 0 0 0 0 0 0

110 0 0 0 0 0 0 0 0

111 0 0 0 0 0 0 0 0

101 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0

Lower half of the hypercube H7

000 001 011 010 110 111 101 100

000 I 2 I I 2 I

001 3

011

010 I 1 1 1

110 I 1 1 1

III

101

100 I 2 I I 2 I

Upper half of the hypercube H7

www.manaraa.com

198 Chapter 7

SG(i, j)4h -(k-l-dI2), O::;i, j<2h, k-dl2-1 ::;h::;k-l

SG(Li2h +dI2-k+ IJ U 2h +dJ2 -k+ IJ), 0::; i, j < 2\ 0::; h (7.7)

<k-k-dl2-1

This mapping is the correspondent to Eqs. (7.5) for the collated Gray code.
Between the two mappings there is a graph isomorphism. The parameters that
measure the efficiency of the simulation are therefore the same as in the col­
lated Gray code, and nothing special can be added.

With either mapping (shuffled or collated Gray code), the simulation pa­
rameters introduced in Section 7.1 can be evaluated as follows. In the two
cases considered, the numerical example is given on a RIO hypercube simulat­
ing the previously considered IO-level pyramid:

• Processor load is, as above, just 1 when the number of PEs is greater
than the number of PNs; otherwise, at PEo, which acts for a whole subpyramid
and as a single node in each of the remaining d/2 levels, it is (22k - d -1)/3 +
d/2. The least loaded PE only works for the subpyramid, and its load compares
fairly well with that of the maximum loaded one. In the case study of a 10-
level pyramid simulated by an RIO hypercube, processor load attains 346,
while the smallest value is 341, which shows an extremely well balanced simu­
lation .

• Expansion is 3 . 2d/(22k -l) and becomes 0.003 in the case study. Its
inverse 341.33 is almost exactly the smallest value of the processor load, a
result to be expected due to the good balancing of the processor load.

• Dilation has been shown previously to be 3 and 2, respectively, when
the number of PEs is greater or less than the number of PNs, an exceptionally
good result if compared with simulations on meshes.

• Link load is 3 when the number of PEs is greater than the number of
PNs; otherwise it is 2k-l-dI2 + d/2 - 3 between a subset of PEs which map the
4 X 4 level in the pyramid. This subset consists of the eight couples of PE
mapping nodes which are adjacent but not siblings. Indeed, as a result of the
mapping, the link between each pair of these PEs sustains all lateral connec­
tions between the subpyramid of base 2k-l-dI2 X 2k - I-dJ2 and the lateral con­
nections of the nodes in the higher levels they host, which are dl2 - 2. The
resulting link load value for the case study is 18.

7.3.2. Other Embeddings

When the hypercube simulating the pyramid is large enough to give rise
to a processor load equal to 1 (the second case just analyzed), the embedding

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 199

of the pyramid into the two halves of the hypercube (one for the base, the other
for the remaining levels) is not the only possible solution. Two classes of new
mappings have been produced;ls one attains the same values for dilation and
link load as the second embedding above (namely, dilation 3 and link load 2),
and the other optimizes dilation (which is lowered to 2) at the expense of link
load (which increases to 3). A short description of such proposals follows;
since the details are rather complex, the interested reader is referred to the
original paper. The first case is presented, even if it is intrinsically equivalent
to the analogous result by Stout, because the same performance is obtained
without an explicit mapping of any submesh in the pyramid. It also serves as
an introduction to the second one, which is peculiar by itself because the de­
crease in dilation is obtained at the expense of the communication among sib­
lings in the pyramid. Indeed, while in all the other solutions the longest se­
quence of hops (dilation is 3) in the hypercube necessary to simulate a single
connection in the pyramid involves a parent node and one of its children, in
this case the longest one (dilation is 2) is attained also among nodes adjacent
within a level of the pyramid.

7.3.2.1. Optimum Link Load Embedding

The algorithm defines the mapping gk: P k ~ H 2k+ I of a pyramid of k + 1
levels onto the minimum-sized hypercube, yielding a processor load of 1, thus
having twice as many PEs as there are nodes in the base of the pyramid. The
mapping gk is illustrated in Figure 7.7 for k= 1 (a two-level pyramid). The
nodes of the pyramid are depicted as black circles. Their label (h, i, j) is
associated with the corresponding hypercube address. Dotted circles denote
those PEs in H3 which do not map any PN, but are used to connect the parent
PN to its children. Note that this mapping is one of 24 equivalent allocations.

The mapping clearly shows that the connection between pyramid nodes
000 and 111 (parent and southeastern child) has dilation 3 because it involves
two intervening PEs (100 and 101). Furthermore, the hypercube link between
PE 100 and PE 000 is the maximum loaded one and produces a link load 2
(drawn twice in the figure). For the recursive construction of larger pyramids,
it is essential that the apex of the pyramid be mapped to a PE (in this case 000)
adjacent to another PE (in this case 001) which does not map any other PN.
The link load between these two PEs must be a minimum. In the following
discussion, these two PEs will be referred to as ex and {3, respectively.

Figure 7.7 shows three more embeddings of PI into H 3' They can be
derived from gl by symmetrical reflections: gl, v is the vertical reflection with
respect to a plane passing through the apex of the pyramid and splitting the

www.manaraa.com

200

h,h, 00 01

0 000 100

1 llO

",,",hI 00 01

0 000 101

1 111

I",",h 00 01

0 000 110

1 100

~ 00 01

0 000 III

1 101

11

101

III

11

100

110

11

III

101

11

llo

100

10

10

II
1. V

10

10

~,VB

110 1.11
111 011

Chapter 7

Figure 7.7. One of the 24 equivalent
embeddings gl : PI -+ H3, together with
the three associated rotations gl.v; gl.H;

and gIYH' In the drawings, pyramid
nodes are black circles and the label (h,
i, j) is bold; PEs in H3 have labels h2
hI hO in plain text; those used only for
message routing are indicated by dotted
circles.

base into western and eastern children. gl,H is the horizontal reflection with
respect to the plane through the apex splitting the base into southern and north­
ern children. gl,VH is the composition of gl,v and gl,H' The role of these alterna­
tive embeddings is crucial in the recursive construction of gk: Pk ~ H2k+ I from
g k - I: P k - I ~ H 2k - I' This will be explained in the case of the mapping of the
next larger pyramid P2 into Hs.

Basically, P 2 can be seen as the assembly of four instances of the smaller
pyramid PI, each associated with one of the nodes of level 1 in P2' plus a

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes

hoh lh 0

a = 0 0 0

Figure 7.S. Recursive construction of II '" 0 a 1

a pyramid of k + 1 levels P k onto a hyp-
ercube H2k+ j with dilation 3 and link
load 2. The top subpyramid of P2 is
mapped in a three-dimensional subcube
of H5 using gj. 110

Ola
111
lla

201

further level consisting of the apex alone. In the same way, H5 is made up of
four smaller hypercubes H3, namely 00H3, 01H3, lOH3, 11H3. The desired
mapping g2: P2 ~ H5 is arrived at as follows: the subpyramid PI emanating
from node 100 of P2 is mapped to OOH3 using gl' the subpyramid PI emanating
from node 110 of P2 is mapped to 01H3 using gl. H' the subpyramid PI emanat­
ing from node 101 of P2 is mapped to lOH3 using gl. v' and finally the subpyra­
mid PI emanating from node 111 of P2 is mapped to I1H3 using gl. HV' The
use of reflections guarantees the required adjacency between nodes in the base
of the target pyramid, that is, level 2 of P2•

The mapping of the topmost subpyramid in P 2 is obtained in the three­
dimensional subcube of H5 generated by {OOa, 01a, lOa, lla, 00/3, 01/3, 10/3,
I1f3} using the property of the basic embedding gl that a is adjacent to /3.
Note that this solution is not unique. With reference to Figure 7.8, the topmost
subpyramid of P2 is mapped using g] in such a way that the resulting final
embedding g2 preserves the desired properties of a dilation of 3, link load of
2, and the required condition for the recursiveness of the algorithm (the apex
of P2 is mapped to the PE labeled 00/3 adjacent with no congestion to PE 01/3).
Figure 7.9 shows the embedding gz of the nodes of P z laid out onto a planar
representation of H5 along with the complete three-dimensional representation.

7.3.2.2. Optimum Dilation Embedding

A minimization of the dilation is obtained by using a different type of
embedding of PI' depicted in Figure 7.10, denoted by k Its main characteris­
tics are that any two nodes in P I are connected by at most one intervening PE
(only three couples are directly linked with dilation 1) and that two links in H3

www.manaraa.com

202 Chapter 7

Ih.~h, 00 01 11 10 00 01 11 10

00 100 lOO :101 000 l10 ll1

01 110 l30 III llO III

11 111 l33 l3l ll3 ll:;l

10 101 l03 lOl :113 :11:;1

6=+--~~-I----:lI--;;f--tl-:-:---t-----j. 303
10010

Figure 7.9. The complete embedding of Pz into Hs is obtained using the four versions of PI of
Figure 7.7 to extend the topmost subpyramid shown in Figure 7.8 to the third level. By construc­
tion, the resulting embedding maintains dilation 3 and link load 2. The mapping of the 21 pyramid
nodes of Pz onto the 32 PEs of Hs is shown both in a table and in a drawing.

www.manaraa.com

~hl 00 01 11

0 000 100

1 110

~hl 00 01 11

0 000 101

1 111

~hl 00 01 11

0 000 110

1 100

~hl 00 01 11

0 000 111

1 101

10

101

111

10

100

110

10

111

101

10

110

100

f
1

~--~-----tll01
100

110 e ----O ---41

f
1. V

f
1. H

f

011

110
101

110
110

1. VH

110
100

e __ +----41101
110

001

e---'()----41101
101

~--I€:)---t1101
011

Figure 7.10. One of the 24 equivalent embeddings!1 : PI --> H 3, together with the three associ­
ated rotations!1, V;JI , H; and!l, VH' In the drawings, pyramid nodes are black circles and the label
(h. i. j) is bold; PEs in H3 have labels h2 hi ho in plain text; those used only for message routing
are indicated by dotted circles,

www.manaraa.com

204 Chapter 7

have congestion 2. Thus, this elementary embedding attains the desired reduc­
tion of dilation to 2.

It is then used, along with its reflectionsfev,j"H' and I, ,VH built in accor­
dance to the reflections of g, (also shown in Figure 7.10), in a recursive algo­
rithm. This produces in a top-down fashion the mapping Ik of P k into H 2k+' by
first using I, for the topmost subpyramid of Pk • The recursion applies I, for
each new subpyramid whose apex (h, i, j) has imod 2 = jmod 2 = 0; fev for
imod2 = 0, jmod 2 = 1;/" H for imod 2 = 1, jmod 2 = 0; andfe VH for imod 2 =jmod 2 = 1.
The mapping 12 of the three-level pyramid P 2 is shown in Figure 7.11 both in
a table representation of H5 and in the three-dimensional sketch.

The recursive use of I, and of its reflections guarantees that dilation is kept
at 2. As for the link load, the algorithm gives rise to a few instances of links
among PEs which receive congestion 3, even if no such link exists within the
basic embedding I,. By inspection, one can verify that 12 contains two such
links, namely (0000 1-00 10 1) and (10001-10 10 1).

Details of the embeddings (both gk andlk), along with analytic derivations
of the average link load and dilation, can be found in Ref. 18. While the
quantitative assessment clearly shows where the optimum is in terms of the
defined parameters, another type of assessment can be made. This regards the
homogeneity of the communication pattern. Mesh-based embeddings naturally
map communications primitives for intralevel data exchanges, and do so with­
out introducing any unbalances. Vertical data exchanges are slower, because of
the larger dilation, and more irregular, because only some of the pyramid edges
have the dilation value (maximum). The embeddings introduced in this section
not only do not use the mesh, but also introduce irregular communication pat­
terns between nodes of the pyramid belonging to the same logical level. This
is the cost to be paid in reducing the dilation.

7.3.3. Embeddings on Real Systems

The description of the mappings of pyramids on the hypercube architecture
has not only a theoretical interest. The hypercube structure has been adopted in
quite a few commercial multiprocessor and multicomputer systems. NCUBE,
Intel, Floating Point Systems, and Thinking Machines have built and distrib­
uted hypercube machines of different sizes and conceptions. Other companies,
such as MEIKO, offer multiprocessor platforms, mainly based on the
transputer, that can be configured as hypercubes.

The discussion of the mapping made so far, although potentially useful

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 20S

h.lt 00 01 11 10 00 01 11 10

00 000 100 101 110 111

01 213 210 223 220

11 200 203 230 233

10 212 211 201 202 222 231 221 232

Figure 7.11. A complete embedding of P2 into H5 obtained using the four versions of PI of
Figure 7.10. The recursive construction applies the four reflections of II according to the values of
the least significant bit of i and j in nodes (l, i, J)' By construction, the resulting embedding has
dilation 2 and link load 3.

www.manaraa.com

206 Chapter 7

for all hypercube machines, is particularly relevant for fine-grained ones, since
they comply best with the compact pyramid structure. The family of systems
by Thinking Machines, including the models CM-l and CM-2, is the closest
to the massively parallel fine-grained model. It has been extensively studied
and a few proposals of practical embeddings have produced actual running
environments to develop pyramid algorithms. After a description of the features
of the CM architecture and software environment pertinent to this discussion,
three embeddings will be described for the quad pyramid mapping.

Furthermore, the bin-pyramid architecture adopted by the SPHINX system
(described in Chapter 5) has been fully simulated on the CM-2 as well. This
effort is the only attempt to study the special embedding of a bin pyramid on
the hypercube, and it is reported here to complete the subject.

7.3.3.1. The Connection Machine Environment

The Connection Machine (models CM-l and CM-2) is a SIMD multiproc­
essor system consisting of up to 64k-bit serial PEs. The PEs are integrated into
chips, each containing 16 PEs, usually arranged as a 4 X 4 small mesh. The
chips are interconnected to form a hypercube of 12 dimensions, H 12 , by the
router subsystem; each PE in the machine is therefore identified by a single 16-
bit address, and the whole set of physical processors results in a 16-dimension
hypercube H 16 • The model CM-l had a NEWS communication network that
created a single two-dimensional mesh by interconnecting the 4 X 4 small grids
embedded in each chip. Such a network is not available in the CM-2 model,
which resolves this type of communication with an optimized use of the router.

The software environment in the CM supports the notion of "virtual proc­
essor. " An application can be coded as if the number of processors were)arger
than what is really available. Each physical processor takes care of a number
of such virtual processors by time-slicing through its allocated subset. The ratio
of virtual processors to physical processors is called the vp ratio (VPR). The
mapping of virtual processors to physical PEs is somewhat constrained, given
that both must be a power of 2. Moreover, the data-parallel programming style
is supported in the CM by the notion of vp set. A vp set is a group of virtual
processors arranged logically in a specified geometry, which is an n-dimen­
sional grid. The cardinality of the vp set must be an integer multiple of the
physical dimension of the machine. Furthermore, the geometry must have a
power-of-2 dimension on each axis in the n-dimensional grid.

Each virtual processor is assigned a "send address," which is unique

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 207

within the vp set. It is an unsigned integer extending from 0 to the cardinality
of the vp set minus 1. The send address can be broken down into two main
fields; the physical address (most significant bits) and the virtual part (least
significant bits). The first specifies the physical PE that maps the virtual proces­
sor, and the virtual part identifies the virtual processor within the memory of
the physical one. The physical part can be further divided into "on-chip bits"
(four) and "off-chip bits" (the dimension of the hypercube of chips). As an
example, a 512 x 512 mesh mapped onto the largest CM-2 has a VPR of 4.
The "send address" consists of 18 bits, of which the least significant two are
the virtual component. The next 4 identify each PE within the chip, and the
remaining 12 are the address of each chip in H 12.

The mapping of a geometry onto the physical machine is only partially
under program control. If nothing is specified, the system allocates the n-di­
mensional mesh in the machine. Therefore any two neighbors in the mesh are
either in the memory of the same physical processor (coincident physical ad­
dress) or on physical processors on the same chip (coincident hypercube ad­
dress) or on chips directly connected through the router by a single link (hyper­
cube addresses with a Hamming distance of 1). The Gray code is used in the
same way when handling the geometry. The physical component of the send
address is split into as many parts as are the axis of the geometry. Each part
codes the corresponding axis index with a reflexive Gray code. The resulting
coding is therefore a collated Gray code. A more detailed control of the virtual­
to-physical mapping allows us to specify the relative weights of the axis of
the geometry. Mesh locations belonging to the axis which sustains the highest
communication load are mapped in physical contiguity on the PEs.

a. CM-J Embedding. The first pyramidal programming environment was
designed to run on the CM-l at Columbia University.19 It did not rely on the
virtual environment of the later models of the Connection Machine. Yet, it
managed to simulate pyramids with a base of up to 256 x 256 nodes, explicitly
controlling the allocations of nodes in higher levels so that a PE acts at most
for one extra node above the base (processor load 2). The mapping favors
vertical communications against horizontal ones: vertical dilation is 3; the hori­
zontal one scales with the dimensions of the hypercube (16 in the largest CM-
1 model).

The mapping of nodes in the base of the simulated pyramid relies on a
shuffled row-major indexing scheme, denoted by SRM(i, j) in the following. It
uses the standard bidimensional mesh supported in hardware by the CM-l to
perform near-neighbor data exchanges in unit time.

www.manaraa.com

208 Chapter 7

Nodes in higher levels are mapped to PEs whose send address is given by
the expression

Table 7.4 shows the mapping of P3 onto H6 . Clearly, each PE works for
a maximum of two nodes in the pyramid. On each level, the positions of nodes
within the corresponding mesh comply with the shuffled row-major sequence.
Despite this, the embedding of such meshes on the hypercubes does not guaran­
tee adjacency among neighbors. Therefore, logical neighbors are not located
on adjacent PEs on the hypercube.

As to horizontal communications, a single shift of data along any of the
four cardinal directions of the mesh requires a minimum of d/2 - 1 transmission
steps over hypercube links. This is easily shown if we consider the movement
of data in the first level above the base (h = 1) in an eastward direction. All
couples of nodes (1, i, i) which are located on the two central columns
il = 2k- 3 -1 and i2 = il + 1 have shuffled row-major indexes SRM(i, il) and
SRM(i, i2) which differ in all even positions. The "send addresses" resulting
from the mapping of Eq. (7.8) differ accordingly at the same positions, exclud­
ing bit position 0 (it is assumed that the least significant bit is labeled 0). With
reference to Table 7.4, sending data from nodes (1, i, 1) to nodes (1, i, 2)
requires first using hypercube dimension 4 (the left half of the mesh is transmit­
ted to the right half), then dimension 2 (within the right half of the mesh the
right half is sent to the left one). It can be shown that these d/2 - 1 transmission
steps on the hypercube cover all the movements, on all levels, one position
eastward on the meshes above the base.

Regarding vertical communications, each transition by one level requires
three steps over the hypercube links (dilation 3). The upper-left child of a node
sends its data to its east neighbor, which in tum routes it southward. Finally
the parent node is reached through a third movement (this step is missing only
between the base of the pyramid and level O. The hypercube dimensions in­
volved in the data transfer between levels h and h + 1 are, respectively, 2h,
2h + 1, and h - 1. A SIMD transfer among all couples of levels is possible and
takes at most three steps. Data transfer for two children takes two steps (pre­
cisely over hypercube dimensions 2h + 1 and h - 1 for the upper right child and
over 2h and h - 1 for the lower left one). The last child is at a unit distance
along dimension h - 1.

b. CM-2 Embeddings. Two more environments for pyramidal proces­
sing2o• 21 have been set up on the second major version of the Connection

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 209

Table 7.4. Mapping of P3 onto H6

i\j 000 001 010 011 100 101 110 111

000 00000o 000001 000100 000101 010000 010001 010100 010101

001 000010 000011 000110 0001ll 010010 010011 010110 010111

010 001000 001001 001100 001101 011000 011001 011100 011101

011 001010 001011 001110 001111 011010 011011 011110 011111

100 100000 100001 100100 100101 110000 110001 110100 110101

101 100010 100011 100110 100111 110010 110011 110110 110111

110 101000 101001 101100 101101 111000 lllOOI 111100 111101

111 101010 101011 101110 101111 111010 111011 111110 111111

a

000 001 010 011 100 101 110 III

000 0 0 0 0 0 0 0 0

001 0 1 0 I 0 1 0 1

010 0 0 0 0 0 0 0 0

011 0 I 2 I 0 I 2 I

100 0 0 0 0 0 0 0 0

101 0 1 0 I 0 I 0 1

110 0 0 0 0 0 0 3 0

III 0 1 2 I 0 I 2 1

b

www.manaraa.com

210 Chapter 7

Machine, the CM-2. Both take advantage of the support of the virtual processor
concept but differ in their allocation strategy.

The embedding of Sher and Rosenfeld20 uses the shuffled Gray code to
map virtual processors onto physical PEs. The send address of the PE simulat­
ing pyramid node (h, i, J) is given by

(7.9)

The virtual component of this address takes 2k-2-d bits on a CM-2
configured as an Hd hypercube. For example, a 1O-level pyramid (k= 10) simu­
lated on a maximum configuration CM-2 (which is the hypercube H 16) yields a
VPR of 4 on the base of the pyramid. Of the 18 bits of the send address, 2 are
used to identify each node of the four mapped in the memory of the same PE.
The virtual processor scheme produces the crinkled storage format introduced
in Section 7.2.1.1.

Equation (7.9) is closely related to Eq. (7.7). Indeed, Eq. (7.7) produce
the physical component of the send address of a virtual processor in the Con­
nection Machine environment.

The mapping thus obtained is functionally equivalent to the first mesh­
based embedding introduced in Section 7.3.1, described by Eqs. (7.5) and
(7.6) and illustrated in Table 2b. Except for the use of the Gray code type, the
two solutions are equivalent. Physical processor 0 simulates k nodes, and all
other quantitative parameters remain unchanged.

As to data exchanges between neighbors on the pyramid, determining the
address of the parent is very easy. For any node (h, i, i) the send address need
only be modified by setting bit positions 2h and 2h + 1 to zero. Indeed, the
parent node of (h, i, i) is labeled (h + 1, Lil2 j, LJ/2 j) and has the send address
SG(LiI2j, Ljl2j)4h + l • For an instance, in the mapping of P9 the send address
of a node on the seventh level (6, i, j) is represented by the bit sequence i2i2
ilil ioio 00 00 00 00 00 00 and the corresponding bit sequence of
(7, li!2 j, LJ!2j) is i2 i2 i l il 00 00 00 00 00 00 00, where bit positions 12 and
13 have been set to O. Conversely, the send addresses of the four children are
built by setting bit positions 2h - 1 and 2h - 2 to each of the bit couples 00,
01, 10, and 11.

Thanks to the Gray code, only one bit in the send address of a node needs
changing for near-neighbor connections within a level. However, the bit to be
changed depends on the position of a node within the mesh. With VPR = 1,
half the dimensions of the hypercube must be used for a one-step data transfer
along one direction in the mesh of the level.

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 211

The embedding of Mzaik and Jagadeesh21 overcomes both the poor near­
neighbor communications performance of the CM-l solution and the uneven
usage of the virtual processor scheme of the Sher and Rosenfeld approach.

The mapping handles pyramid levels differently according to the ratio of
the corresponding mesh with the CM-2 hypercube. With the usual terminology,
a pyramid P k of K X K nodes in the base is mapped on the H d CM hypercube by
using a different vp set for each level h with a mesh larger than the hypercube,
0:5 h < k - 1 - dl2. The virtual processor allocation can be set up so that each
PE stores in its memory a complete subpyramid (the crinkled storage format).
The VPR is uniform throughout the PEs and the vp set of level 0 is the most
time consuming that is simulated.

The level of the pyramid containing as many nodes as the PEs of the
hypercube (h=k-l-dI2), and all other higher levels (h:5k-l) are mapped
into a single vp set according to a scheme that is identical to the flat pyramid
approach described in Section 7.2.3.1. The first level is mapped using either
of the standard mappings of meshes with VPR = 1 (the default is the collated
Gray code at chip component level). The meshes (h, i, j) of the other levels
are relocated by the coordinate transformation given in Eq. (7.2).

The overall VPR in this vp set is 2. All considerations made for the flat
pyramid embedding onto a mesh are valid here, as far as higher levels are
concerned. Indeed, for the lowest levels the crinkled solution is superior be­
cause CM does not support parallel neighbor access.

However, the addressing scheme in the resulting pyramid simulation re­
quires different mechanisms in each of the two sections of the pyramid. Verti­
cal communications below level k - 1 - dl2 are implemented through a CM
software primitive named "cross-vp-move." This determines mesh coordinate
transformations within different geometries. On the higher levels (that is,
within the last vp set), explicit handling of node coordinates is required to build
the send address of a parent node. Horizontal communications are similarly
managed. The power-of-2 near-neighbor data exchanges required in higher lev­
els are directly supported by the CM hardware and are executed in constant
time.

c. The Embedding of a Bin Pyramid. The majority of effort to obtain
efficient embeddings onto an hypercube for pyramids has only considered the
quad-pyramid topology. Overlapped pyramids have been partially addressed in
the work of Sher and Rosenfeld. Other pyramids have not been considered.
The exception is the bin pyramid, as defined in Chapter 3. Its motivation is the
need to produce a simulation environment for the SPHINX machine (see Chap­
ter 5), which is indeed a bin-pyramid system.

www.manaraa.com

212 Chapter 7

Various possibilities22 have been analyzed, with the goal of obtaining an
architectural embedding of the SPHINX system onto a CM-2 model, usable for
effective SPHINX code development down to bit-serial register transfer level.
Two approaches are reported here; the first is a graph-theoretical solution us­
able on any massively parallel hypercube machine, and the second exploits the
peculiar software architecture of the CM to arrive at a very efficient
embedding.

From a graph-theoretical point of view, a bin pyramid with K X K nodes
in the base has 2K2 - 1 nodes and 2k - 1 levels, with k = 1 + log2 K. The coordi­
nates of a node (h, i, j) are defined, with the assumption that h is 0 in the
apex, so that the following relations hold:

O:s;h<2K -1, O:s; i < 2L(h+ l)l2J, (7.10)

Any embedding with processor load 1 therefore requires a hypercube with
2k - 1 dimensions, H 2k _ 1. One half of the hypercube maps the base of the
pyramid, the other all the remaining levels. The resulting expansion is roughly
1 (to be precise (2K2 -l)/2K2). An embedding is possible that guarantees a link
load 2 and a dilation 2, which is the theoretical minimum for any bin pyramid
on a hypercube. It is defined by labeling the nodes of the pyramid in top-down
fashion according to the following algorithm:

label(apex) = 1
label(h+ l,i, j)=label (h, Li/2j, lJ/2j)+2h+1 (7.11)

or
label (h, Lil2j, lJ!2j)+2h + 1 -2h

The choice in the label of the two children of a given node can be used to
guarantee adjacency between neighbors on the children levels. Indeed, this la­
beling scheme maps a node and one of the two children (the one labeled ac­
cording to the first choice) on adjacent hypercube PEs. At the same time, it
maps the two children on adjacent PEs. Therefore the second child is at a
Hamming distance of 2 from the parent. Adjacency on the hypercube among
nodes that are not siblings depends on the association of the two possible labels
between the right and left children. If the association is static-that is, if the
right child always takes its label from the former choice and the left one from
the second-adjacency within a level is not maintained. Indeed, it can be easily
shown that, in such a case, the above algorithm can be replaced by the closed-

www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 213

form addressing scheme for node (h, i, j) defined as in (7.11), valid in hyper­
cube H2k - 1:

2h + RSRM(i, j) (7.12)

In the expression, RSRM(i, j) indicates the reversal, bit by bit, of the shuffled
row-major code SRM(i, j).

To preserve adjacency among nonsiblings nodes, it is necessary to resort
to a reflexive coding, such as the shuffled Gray code. The addressing scheme
becomes

2h + RSG(i, J) (7.13)

where RSG(i, J) indicates the bit by bit reversal of shuffled Gray code SG(i, j).
Figure 7.12 shows the labeling of a bin pyramid of five levels having a

4 x 4 base according to Eq. (7.13).
The implementation onto the CM of this embedding has two drawbacks.

Communications within a level use half of the dimensions of the hypercube,
and no correspondence exists among levels, hypercube dimensions, and near­
neighbor direction. Furthermore, the mapping is based on the use of a single
vp set. Therefore, operations carried out on a single level of the pyramid in­
volve the set of virtual processors of the whole pyramid, with a huge waste of
simulation time. This is peculiarly bad if one considers that SPHINX is a multi­
SIMD system.

A second embedding which overcomes these problems relies heavily on
the storage management of the eM. The approach is to use a standard mesh
embedding for each level of the pyramid. This is to preserve near-neighbor
adjacency, using a single vp set for each layer (at least for levels larger than a
half of the hypercube). This solution is then slightly modified to exploit the
virtual-to-physical processors mapping in order to guarantee that a parent and
its two children are mapped in the same PE and that variables allocated on each
couple of children are mapped on adjacent words in the memory of the physical
processor. In such a case, it is possible to use the "aliasing" feature of the
PARIS language, the assembly-level programming environment of the CM.
This allows us to consider two consecutive words in the memory of a PE, each
p bits long, as a single 2p-bit word in a different geometry. So, transmitting
two children values to the parent node is simply a different way of addressing
the physical memory of the PE. The actual management of the aliases is
slightly different if the level of the children is odd or even. The odd case is
more efficient, because the even one requires some true movements of data.

www.manaraa.com

214 Chapter 7

~Jt 00 01 11 10 00 01 11 10

00 100 ~01 ~OO 000 110 ~11 HO

01 300 301 311 310 330 331 311 3~0

11 401 40~ 4U 411 431 43~ 4l~ 4H

10 400 ~03 413 410 430 433 413 410

~~~~-+4I~--~~~-tl77t----~".JO 
10001 

Figure 7.12. Embedding of a five-level bin pyramid into Hs. The two tables indicate the mapping 
of PNs (in bold) onto the PEs. The drawing highlights the fact that the embedding has dilation and 
link load 2. 



www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 215 

The implementation based on the "aliasing" feature exhibits a consider­
able speedup (10-20) over the previous solution, but cannot be used on sys­
tems that do not support this feature. 

7.3.4. The Neighbor Addressing Scheme 

The neighbor addressing scheme within a mapping P ~ H consists of the 
procedure which returns the hypercube address of the PE embedding the chosen 
neighbor of a pyramid node PN. Although less important than the other quanti­
tative measures of efficiency defined in Section 7.1, it gives some hints to the 
ease of practically coding the embedding. This can be a relevant problem if the 
targeted hypercube is a SIMD machine rather than a MIMD one. 

Due to the symmetry in the pyramid, only three cases need to be consid­
ered, namely, addressing a neighbor within the same pyramid level, addressing 
the parent, and addressing one of the children: 

(h, i±l,j±l) 
(h, i, j) ~ (h - 1, Lil2 J, U/2 J) (7.14) 

(h+ 1, 2i, 2j) 

Only the first case will be analyzed; analogous considerations are also 
valid for the others. In the two mesh-based embeddings considered in Section 
7.3.1, the addressing procedure requires using d/2 hypercube dimensions in H d 

on the base of the pyramid on any neighborhood direction. This decreases lin­
early with the level, since at each new pyramid level two more bits in the 
addresses are set to a fixed combination of values. Since the embedding of the 
meshes which correspond to the pyramid levels has dilation 1, the addressing 
procedure cost is 1 if the PEs have addressing autonomy. Each PN sends this 
data to its targeted neighbor over the correct hypercube link with no conges­
tion. If, however, the hypercube works under the SIMD model, the cost can 
rise to d/2. Indeed, the changes in the hypercube dimensions can only be car­
ried out sequentially on different sets of PEs. 

When the embedding is not explicitly based on the mesh, a more irregular 
pattern is necessary. For any given neighborhood direction, the required hyper­
cube dimension changes with the level of the pyramid. For example, let us 
consider a transmission from (h, i, j) to (h. i + 1, j) in the embedding of Figure 
7.9. On level h = 1, such a transmission is along h3 , on level h = 2 it is along 
110 and h3• The addressing becomes very irregular when it involves nonuniform 
costs of transmission along the same direction, as in Figure 7.11. Since dilation 



www.manaraa.com

216 Chapter 7 

raises to 2, even for data exchanges within the same level in the pyramid, at 
least two hypercube dimensions are always involved. The same case we have 
just considered now requires three of the five dimensions of H5 • 

The implementations on the Connection Machine considered in Section 
7.3.3.1 show the relevance of this problem. 

7.4. CONCLUSIONS 

This chapter has highlighted the capabilities of the two most common mas­
sively parallel architectures, the mesh and the hypercube, in emulating compact 
fine-grained pyramids. 

A number of quantitative parameters have been used to measure the effi­
ciency of the embeddings that have been proposed. This type of benchmarking, 
though rather crude, offers a first-order criterion to select the most convenient 
solution, according to the peculiarities of the actual system available. 

The programming effort implied by the simulation has also been partially 
analyzed. The near-neighbor access, which is a crucial feature in compact pyra­
mids, has been considered in some detail. 

In the case of the mesh topology, there are a few hardware enhancements 
to the basic structure of the mesh that considerably reduce the cost of the em­
bedding. Notably, the "flat pyramid" solution seems quite a good compromise 
between system complexity and simulation performance. 

REFERENCES 

I. Q. F. Stout, Mapping vision algorithms to parallel architectures, Proc. IEEE 76(8), 982-995 
(1988). 

2. H. Li and Q. Stout (eds.), Reconfigurable Massively Parallel Computers, Prentice-Hall, En­
glewood Cliffs, NJ (1991). 

3. A. P. Reeves, Pyramidal algorithms on processor arrays, in Pyramidal System for Computer 
Vision (V. Cantoni and S. Levialdi, eds.), pp. 195-214, Springer-Verlag, Berlin (1986). 

4. C. Lunghi: Progetto di un chip multiprocessore per macchina piramidale, thesis, Pavia Univer­
sity, Italy, 1987. 

5. M. J. B. Duff, Pyramids: expected performance, in Pyramidal System for Computer Vision 
(V. Cantoni and S. Levialdi, eds.), pp. 59-74, Springer-Verlag, Berlin (1986). 

6. V. Cantoni and S. Levialdi, Multiprocessor computing for images, IEEE Proc. 76(8) (1988). 
7. M. G. Albanesi, V. Cantoni, U. Cei, M. Ferretti, and M. Mosconi, Embedding pyramids into 

mesh arrays, in Reconfigurable Massively Parallel Computers (H. Li and Q. Stout, eds.), pp. 
123-140, Prentice-Hall, Englewood Cliffs, NJ (1991). 



www.manaraa.com

Simulation of Pyramids on Flat Arrays and Hypercubes 217 

8. H. Li and M. Maresca, Polymorphic-torus architecture for computer vision, IEEE Trans. Pat­
tern Anal. Machine Intel/. 11(3), 233-242 (1989). 

9. M. Maresca and H. Li, Polymorphic VLSI arrays with distributed control, in Reconjigurable 
Massively Parallel Computers (H. Li and Q. Stout, eds.), pp. 33-63, Prentice-Hall, Engle­
wood Cliffs, NJ (1991). 

lO. H. Li and M. Maresca, "Connection autonomy in SIMD architectures: a VLSI implementa­
tion, J. Parallel Distrib. Comput. 7(2), 302-320 (1989). 

11. K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, pp. 779-784, 
McGraw-Hill, New York (1984). 

12. R. Negrini, M. G. Sami, and R. Stefanelli, Fault-Tolerance through Reconjiguration of VLSI 
and WSI Arrays, MIT Press, Cambridge, MA (1989). 

13. K. E. Batcher, Design of a massively parallel processor, IEEE Trans. Comput. C-29, 
836-840 (1980). 

14. M. C. Pease, The indirect binary n-cube microprocessor array, IEEE Trans. Comput. C·26, 
458-473 (1977). 

15. C. L. Seitz, The cosmic cube, Comm. ACM 28, 22-23 (1985). 
16. W. D. Hillis, The Connection Machine, MIT Press, Cambridge, MA (1987). 
17. Q. F. Stout, Hypercubes and pyramids, in Pyramidal System for Computer Vision (V. Cantoni 

and S. Levialdi, eds.), pp. 75-89, Springer-Verlag, Berlin (1986). 
18. T. H. Lai and W. White, "Mapping pyramid algorithms into hypercubes, J. Parallel Distrib. 

Comput. 9,42-54 (1990). 
19. I. Hussien, Pyramid algorithms implementation on the connection machine, in Image Under­

standing Workshop, pp. 634-639 (1988). 
20. C. A. Sher and A. Rosenfeld, A pyramid programming environment on the connection ma­

chine, Pattern Recog. Lett. 11(4),241-245 (1990). 
21. T. Mzaik and J. M. Jagadeesh, Simulation of SIMD pyramids on the connection machine, 

Proc. ISMM Int. Work. Parallel Computing (D. Marino and G. Mastronardi, eds.), pp. 
378-381, Acta Press, Anaheim CA (1991). 

22. A. Rougerie and A. Merigot, Architectural simulation of a fine-grained parallel pyramid com­
puter on the connection machine, Proc. CAMP 91, 1991, pp. 297-307. 



www.manaraa.com

Chapter 8 

Heterogeneous Hierarchical Systems 

It is difficult to match the computational requirements of the various processing 
steps (low to high) in a vision problem with just a single homogeneous architec­
ture. Hence, some heterogeneous systems composed of at least two main parts 
have been proposed: performance and flexibility suggest the use of a MIMD 
system for the high-level stages. For reasons of efficiency a large amount of 
data requires specialized hardware to process the image at the low-level stages 
(e.g., standard low-level image processing can be effectively performed by 
SIMD systems with fine granularity or by pipelined systems). Examples of 
composite systems which will be described are heterogeneous pyramid systems 
(such as the Warwick project), multilevel arrangements of meshes (IVA), and 
reconfigurable multimode parallel machines (PASM and Array/Net). 

8.1. INTRODUCTION 

In the taxonomy of hierarchical architectures introduced in Chapter 4, het­
erogeneous systems are split into two families: loosely coupled and closely 
coupled systems. The distinction refers to the way in which the layers of the 
systems are interconnected rather than to the interconnection scheme of the 
processors on each layer. 

Closely coupled systems interpose memory banks between the layers that 

219 



www.manaraa.com

220 Chapter 8 

make up the hierarchy. The synchronization of interlevel data exchanges can 
be based on a variety of primitives, as with any tightly coupled system. A 
detailed discussion of the control issues for data exchanges in the hierarchical 
environment is given in Chapter 9. Loosely coupled systems adopt explicit 
links (buses or permutation networks). Interactions between the levels usually 
require a less tight synchronization in this case, especially when the intercon­
nection network works according to a packet-switching mechanism. 

With reference to the number of levels into which heterogeneous systems 
are organized, the proposed and realized hierarchies consist of three levels at 
the most. The three-level model for computer vision, discussed at length in 
Chapter 4, is the paradigm on which these hierarchical systems are designed. 

The predominantly local, fine-grained computations of the first stages in 
image processing are supported by a SIMD subsystem that constitutes the first 
level of the hierarchy. Middle- and high-level vision tasks are handled by 
coarse-granularity processors in the second and third levels of the systems. 
While the SIMD subsystem is designed around custom chips, the upper levels 
are based on commercially available microprocessors. 

Actually, the distinction between a second level (dedicated to the middle 
stage) and a third level (dedicated to the highest stage) is at least as uncertain 
as the corresponding partition of vision tasks into the three stages. Moreover, 
some heterogeneous systems in the upper levels of the hierarchy concentrate 
both coarse-granularity computations as well as control tasks for the fine-granu­
larity subtasks. This highlights a predominant use of the levels in the hierarchy 
for control strategies rather than for multiresolution representation-based com­
putations. 

For this reason, the subsystems that make up the heterogeneous hierarchi­
cal machines considered here are rather independent components. It is difficult 
to identify a pyramid structure within the hierarchy. The ratio between proces­
sors of adjacent levels changes when we consider the transition from the first 
level to the second and from the second to the third. Typically, one processor 
in the second level interacts with a few dozen small-scale simple processors in 
the first level, while a processor in the top layer of the hierarchy handles a 
number of intermediate-level processors in the range of a single dozen. 

Yet, we find a residual pyramid organization in the "cluster" concept, 
used in at least one of the systems described. A cluster is a modular subset of 
a system consisting of a small mesh of chips integrating part of the low-level 
system; one coarse-grain processor from the upper levels; external memory for 
each type of processor; and interconnecting circuitry. Physically, the cluster is 
realized usually as a single board. At the onset, it acts as the first small-scale 
prototype of the system under construction (it is a minimal hierarchical system 



www.manaraa.com

Heterogeneous Hierarchical Systems 221 

if the control function is carried out by the coarse-grain processor). Once it 
is shown to be functioning properly, it becomes the module for assembling 
realistic machines. 

Developing algorithms and applications on hierarchical systems is in itself 
a difficult task, but even more so when the system is heterogeneous. On the 
system software side, compilers must produce and optimize codes for quite 
different target machines, with each one being a parallel system. The higher 
levels of these computational engines are better equipped from this point of 
view, because many commercial versions of standard high-level languages are 
available on the market. The (usually SIMD) lowest level of the hierarchy is 
obviously the least supported. On the programmer side, the programming sup­
port for managing the heterogeneous hierarchical system is practically minimal. 
At best, the perception of the system is that of two or three parallel subsystems 
that interact through some more or less explicit synchronization mechanisms. 

In the following sections, we describe the more relevant systems that have 
reached a prototype stage (the Array/Net described in Section 8.5 is an excep­
tion). Many other heterogeneous hierarchical machines have been proposed and 
built. We have restricted our discussion to those systems that effectively use the 
hierarchy for processing purposes, not just for a hierarchical distributed control. 

8.2. WARWICK PYRAMID SYSTEM 

The heterogeneous pyramid known as the Warwick pyramid machine l • 2 

(WPM) is a three-level architecture, with each level performing computations 
at a different granUlarity. 

The low-level iconic layer consists of fine-grained bit-serial PEs that make 
up a rather standard array processor. Instead of designing and fabricating a new 
chip, AMT's distributed array processor (DAP) circuits3 have been used. 

The intermediate layer consists of a set of intermediate-level processors 
(ILP in the following), built with off-the-shelf bit-slice components (the AMD 
29000 family). The purpose of the ILP is to drive the fine-grained PEs and to 
collect and aggregate data from the iconic layer. 

At the top of the processing hierarchy, we find a network of INMOS 
transputers that form the so-called symbolic layer, responsible for high-level 
vision tasks and for dispatching intermediate- and low-level operations to the 
other levels. 

The Warwick pyramid architecture aggregates the three levels in clusters: 
a cluster consists of a 16 X 16 subarray of DAP PEs, one ILP for fine-grain 
control, and one transputer. This small-scale heterogeneous pyramid is the 



www.manaraa.com

222 

Transputer 

Microcontrolled 
Sequencer 

Cluste, 's bus 

PEs external 
memory 

Chapter 8 

Figure 8.1. The three-level structure of 
the Warwick cluster. The top level consists 
of a transputer; the intermediate level hosts 
the microcontrolled sequencer with its pro­
gram and data memory; four DAP chips 
make up the bottom layer for a total of 256 
PEs. Vertical transmission is realized by 
dual-ported memory sharing. 

building block for large systems, With proper communication mechanisms at 
each level, clusters can be interconnected in various topologies (linear, mesh, 
ring), The resulting system supports the Multi-SIMD operative modality by 
allowing each cluster to carry out a private task (Multi-SIMD across space), 
SIMD and SPMD processing is also possible, thanks to synchronization hard­
ware at the ILP level that brings all subarrays under the control of a single 
source of instructions. The hierarchy in the system allows for more control 
parallelism, since a transputer is capable of time sharing its resource between 
more than one process and can thus perform computations and issue control 
instructions for the ILP concurrently. 

8.2.1. Structure of a Cluster 

A sketch of the structure of cluster is given in Figure 8.1. The 256 DAP 
PEs are arranged as a 2 x 2 mesh of four DAP chips: each such chip hosts an 
8 x 8 submesh of PEs. For a detailed description of the DAP architecture the 
reader should consult the references. We will only briefly mention the charac­
teristics of AMT chips that are relevant to the present discussion. 

8.2.1.1. SIMD Low-Level Processor 

A three-input full adder is the very simple processing unit of the DAP PE 
(see Figure 8.2). Inputs to the adder come from more than one source, includ­
ing two local Boolean registers, the memory, one of the four near neighbors, 
and a data bus. The carry output is distributed to the neighbor, and the sum 



www.manaraa.com

Heterogeneous Hierarchical Systems 223 

6 ~- -- - - - -- - - - - -- __ a - - x;.-~ -" . --- ------------_., 

Figure 8.2. Simplified block dia­
gram of the DAP PE. The PE is 
based on a bit -serial full adder, 4-
connectivity with multiplexing for 
neighbor access, and x/y addressing 
capability within the chip. o -StonIge ei=ont C-l..og)cunU o -MulUplexer 

output is latched in a Boolean register and can be transmitted to the data bus 
and to memory. Near-neighbor processing is based on the multiplexing tech­
nique (for a discussion of the alternatives to this type of processing, see Section 
5.2.2.1). The usual operation autonomy is implemented by conditioning in­
struction execution with one of the Boolean registers. With regard to stl)rage, 
in the current Warwick prototype each DAP PE has access to 64 kbits of exter­
nal memory. 

The 8 x 8 mesh of PEs within the AMT DAP chips is also interconnected 
by eight row and eight column data buses that can be read and written to by 
the PEs. This facility is used in the Warwick cluster to implement the two 
associative operations through which the ILP interrogates its "slave" SIMD 
submesh. These two operations are discussed later. 

8.2.1.2. Intermediate-Level Processor 

The ILP is composed of a microcontrolled bit-slice pair containing a 16-
bit ALU (AMD 29116) and a sequencer (AMD 29331). Besides the microcode 
store, the ILP has access to a dual-port RAM used to exchange data with the 
SIMD subarray and with the transputer. With respect to the classification intro­
duced in Chapter 4, the WPM is therefore a closely coupled system. The ILP 
is driven by horizontal microinstructions that allow the various processing facil­
ities to be controlled in parallel, including the DAP array, so that the ILP and 
the DAP chips can be seen "as a single processor, capable of executing both 
scalar and array instructions."1 

From the point of view of control flow, the sequencer accepts signals from 
the serial ALU for condition handling and from the DAP subarray data bus to 



www.manaraa.com

224 Chapter 8 

implement a some/none local test. Indeed, by addressing the row and column 
buses, the ILP can detect the status of the PEs and build a signal for program 
flow control. This is the normal global-OR mechanism of SIMD processor 
arrays (see Section 5.2.3.1), here limited to the dimension of a single pyramid 
cluster. Furthermore, the bidirectional data buses allow the ILP to directly ad­
dress a single PE (by properly masking columns and rows). Some/none detec­
tion and PE addressability are the first type of associative data collection avail­
able to the ILP. 

A second form of associative processing is obtained within the cluster with 
the aid of an adder VLSI circuit interfaced to the DAP external memory lines 
(an analogous scheme was adopted in the tree-of-adders system of the GAM 
pyramid; see Section 5.2.4.3 for details). The semicustom VLSI adder pro­
duces the count of the PEs in the DAP chip that respond to a condition broad­
cast by the ILP. The time required for the count to be stable is compatible with 
the DAP basic cycle time. 

8.2.1.3. Symbolic Processor 

The INMOS transputer microprocessor is the symbolic processor of the 
cluster. It acts both as the cluster controller and as a working processor. As 
controller, its primary purpose is to load (at boot time) the sequencer microcode 
memory with the intermediate-level program to be carried out. Private access 
to the microcode memory is reserved to the transputer for this purpose. The 
downward flow of control reduces the required bandwidth for driving the array 
of bit-serial PEs by embedding commands for the ILP in macros. The expan­
sions of these macros is performed by the sequencer. 

The transputer controls the ILP by allocating a "process" to the vertical 
communications: program downloading and data collection. The second activ­
ity is implemented through the dual-port memory shared with the ILP. Other 
"processes" run concurrently on the transputer. Typically, they carry out 
higher-level tasks that interact with the ILP by sending requests for information 
available in the image. Since the aggregation of the image in regions is much 
more irregular than the subdivision of the image into subarrays, the tasks on 
the transputer interact between themselves and with analogous tasks on other 
symbolic processors from neighboring clusters. 

8.2.2. Clusters Interconnection 

The configuration of the Warwick system in terms of clusters can be tai­
lored to the application. Pyramid processing requires a bidimensional arrange-



www.manaraa.com

Heterogeneous Hierarchical Systems 225 

ment of clusters into a mesh, so the image at the base of the pyramid is subdi­
vided into tiles. However, clusters can also be interconnected in a linear string 
or in other topologies. We would like to point out that the feasible topologies 
depend very much on the required low-level connectivity rather than on the 
interconnections at the symbolic layer. 

Indeed, if there is a relevant activity of data exchange at the pixel level, 
the bidimensional topology of the subarrays imposes a fine-grain synchroniza­
tion and the setting up of a SIMD modality between clusters. On the contrary, 
if data once aggregated in the ILP-transputer pair are shared predominantly, 
the interconnection patterns become more flexible, since the Warwick system 
can adopt the numerous solutions derived to build a network of transputers. 

If we remain in the domain of pyramid processing, a typical situation is 
the execution of a program that schedules one (or possibly more) tasks on the 
transputers that control the clusters. The system is synchronized as a whole 
unit to carry out SIMD operations at the lowest level. To do so, a primitive at 
the ILP level initiates a rendezvous procedure. Each ILP has a 4-connected 
switched wired-OR network: this line will be set only when all the sequencers 
are ready. By selectively enabling the switches of the network at each ILP, it 
is possible to set up variable configurations of clusters willing to synchronize. 
The parallel data paths of the bit-serial PEs adapt themselves to the established 
topology once the synchronization process has identified the set of connected 
clusters. When the clusters operate in multi-SIMD mode, the edges of the sub­
arrays are connected in torus mode. 

8.2.3. Programming Environment 

The rich hardware environment of the Warwick system demands different 
programming capabilities to optimize performance at each level. 

The low-level iconic layer is usually programmed according to the "data 
parallelism" paradigm (a discussion of the approaches to the programming en­
vironment for hierarchical systems is presented in Chapter 9). This is typical 
of SIMD architectures. The flexible, coarse-grained network of transputers of 
the symbolic layer is more suited to the communicating sequential processes 
paradigm. No single environment supports both programming styles in a uni­
fied manner. Therefore, the first running Warwick prototype is programmed 
with a variety of tools. 

Assembly language is the only means of coding the low-level routines. An 
instruction in the assembler covers both the actions of the sequencer and the 
code to be executed by the DAP array. This type of programming is very 
difficult and requires a deep knowledge of the details of the hardware (a very 



www.manaraa.com

226 Chapter 8 

similar approach was followed in the design of the system software in the 
PAPIA 1 prototype; see Chapter 5). The high-level network is programmed 
with one of the parallel C dialects typical of the transputer environment. 

The designers of the Warwick pyramid are working toward a unified pro­
gramming environment. It should retain the efficiency offered by the knowl­
edge of the hardware for the experienced user, but otherwise it should hide the 
intricacies of the heterogeneous parallel system from the standard programmer. 

The object-oriented paradigm is considered a viable solution.2 The class 
abstraction is the foundation for a homogeneous programming style. It defines 
the data structure and the procedures ("methods") available on such structures 
as a unit. Both the data structure and the methods are tailored to the hardware: 
on the transputer and on the DAP array the same procedure is embedded in 
different methods, each optimized for the hardware used. The implementation 
is, however, hidden in the class abstraction, and the user perceives the objects 
derived as self-contained building blocks. In the hierarchy generated by the 
inheritance mechanism of the object oriented paradigm, the topmost class is the 
"cluster," which defines all data structures available in the physical heteroge­
neous small pyramid, along with the available operations. 

The Warwick pyramid machine is an example of parallel platform for ex­
perimenting hierarchical processing strategies with a limited-tasks hierarchy. 
The three-level structure of the system (actually a two-level architecture if we 
consider the "true"processing units) allows us to implement a master-slave 
paradigm rather than a multilevel computational strategy. 

8.3. IMAGE UNDERSTANDING ARCHITECTURE 

A joint effort of the University of Massachusetts and of Hughes Research 
Laboratories for over five years led to the design and to the realization of a 
three-level, hierarchical and heterogeneous parallel architecture, known as im­
age understanding architecture (IVA). While not conceived in the spirit of a 
multiresolution architecture, the IVA 4, 5 embeds a hierarchy of processing lev­
els aimed at matching the traditional partition of computer vision into three 
stages: high-level (symbolic), intermediate (associative), and low level (iconic). 

8.3.1. Three-Level Hierarchy 

On the basis of the requirements of each phase, summarized in Weems,6 
the designers conceived a specialized parallel subsystem for each level. The 



www.manaraa.com

Heterogeneous Hierarchical Systems 227 

vertical connections between the processing units are implemented through 
banks of shared memory, so this system in the taxonomy quoted was included 
among loosely coupled systems. The cluster concept of other heterogeneous 
architecture, such as the WPM in Section 8.2, is not retained explicitly here. 
However, each processor in the symbolic layer is the apex of a three-level 
heterogeneous pyramid built with a reduction factor of 64 (see Chapter 3). 
Thus, the minimum IVA configuration hosts an 8 X 8 arrangement of intermedi­
ate-level processors and 4096 bit-serial PEs in the iconic layer. Instead, the 
full-scale IVA consists of a 512 x 512 mesh of bit-serial PEs, of a 64 x 64 mesh 
of intermediate processors and of 8 x 8 symbolic processors. Both the granular­
ity of the processors and their intralevel interconnection modality were chosen 
to suit the specific requirements of the levels. 

The processing modes supported in the IVA cover the wide spectrum from 
strict SIMD and multiassociative SIMD mode of the low-level content ad­
dressable array parallel processor (CAAPP), to SIMD and MIMD mode in the 
intermediate communication associative processor (ICAP), then to general 
MIMD mode in the symbolic processing array (SPA) of the highest layer in the 
architecture. An array control unit (ACU) takes commands from the SPA and 
manages both the ICAP and the CAAPP. In the following, we shall give a 
short description of each level, along with a discussion on the control strategy 
and programming environment. 

8.3.1.1. Content Addressable Array Parallel Processor 

The low-level iconic processor has been designed with custom-integrated 
circuits that embed the bit-serial processors, local memory, and a special recon­
figurable mesh, called the coterie network. The reconfigurable interconnection 
capability of this mesh allows the PEs to set up, at run time, groups of proces­
sors that receive the same instruction but operate on private data common to 
each group (hence, the "coterie"). This data-dependent, associative mode con­
stitutes a notable enhancement of SIMD modality: it can be used for many low­
level algorithms that are based on a regional paradigm. 

The structure of the CAAPP PE consists of four functional subunits (see 
Figure 8.3) described in the sequel. 

• Registers. Five single-bit registers form the immediate operands of 
the PE processing unit. Two of them have special functions. The A register is 
the activity bit and controls the status of the PE (see Section 5.2.2.4 for a 
discussion of operation autonomy). The X register stores the "respond" bit, 



www.manaraa.com

228 Chapter 8 

SIN 

o = Storage element 

FI'om North 
SIN From South 

From East 
From West 

[g = Logic unlt P = MulUp\exer 

Figure 8.3. Simplified diagram of the CAAPP PE architecture. Note the connectivity autonomy 
supplied through the direct control of the coterie settings by the local memory. 

which drives the two associative computations carried out within the CAAPP: 
the some/none and the count mechanism. The first is the global OR signal used 
as a Boolean feedback to the controller of the array, the latter is the adding 
circuitry (also available in other systems such as the WPM and the GAM pyra­
mid). In the IVA system, the role of the enabling-disabling activity bit and 
that of the status information are kept separate. 

• Local memory. It consists of 320 bits organized in banks of 128 bits 
(two full banks and a half one). The banks are addressed with 3 bits so that the 
maximum local memory could be raised to 1024 bits. While the PE sees the 
local memory as a linear address space with bit address ability , two banks of 
such a memory can be transferred to and from external memory in words of 8 
bits. A comer-turning circuitry was implemented at chip level for this data 
reshaping. Such transfers adopt a cycle-stealing mechanism, so that these two 
banks of local memory can be considered as a cache memory. 

• Processing unit. This is a bit-serial ALU with Boolean logic and a 
full adder. 



www.manaraa.com

Heterogeneous Hierarchical Systems 229 

• Interconnection circuitry (coterie). The near-neighbor interconnection 
is realized with a specialized broadcasting scheme that uses six transmission 
gates. These gates are attached to the X register and connect a PE with its 
neighbors in the four cardinal directions, north, south, east, and west, plus the 
northeast and northwest. A wired-OR bus containing the X registers of neigh­
boring PEs was established by setting the transmission gate control signals of 
every PE. The status of the bus (which is managed by a precharging scheme) 
can be sensed at every PE. The group of PEs in a coterie is the result of a 
local processing in each PE, but can give rise to large regions of electrically 
interconnected processors. Many such coteries can be established indepen­
dently. 

The coterie supports three modes of inter-PE communication: broadcasting 
from a source PE to all participants in the group; point-to-point transmission to 
a single destination within the group, by previous broadcasting of the identifi­
cation tag of the receiving PE; associative reading of wired OR messages, 
whereby a single receiver gets the minimum of the multiple data transmitted 
within the group on the fly. 7 The coterie control register insists on the 8-bit 
data path from the local memory, thus allowing a local reconfiguration in a 
single machine cycle. 

The first CAAPP prototype was assembled with custom VLSI chips, each 
containing an 8 x 8 submesh of PEs. The chip has roughly 130,000 transistors, 
is fabricated in a 2-JLm CMOS technology, and operates with a lO-MHz clock 
cycle. Beside the 64 PEs, a chip integrates the comer-turning and external 
video RAM circuitry and more circuitry for the two associative data paths, the 
some/n()ne and the count. Both are implemented with a tree topology and are 
capable of producing the corresponding aggregate data, starting from the 64 
PEs in a machine clock cycle. The count value can be off-loaded from the chip 
only serially, due to the tight pinout constraints imposed at the time of the first 
design of the chip. 

The next level of the assembly of the IVA is the daughterboard. This 
board cuts across the first two levels in the system, since it hosts both a CAAPP 
chip and one processing unit from the ICAP processor. The daughterboard is 
therefore a cluster within the system. It is organized around a system bus, on 
which the dual-ported memories that interconnect the CAAPP and the ICAP 
are interfaced. Moreover, the CAAPP chip directly interconnects with two 
video RAMS: the first is for image loading or unloading to or from a VME 
device, the second is the external working memory for the PEs. A third video 
RAM interfaces the daughterboard with the symbolic processor. The ICAP 



www.manaraa.com

230 Chapter 8 

processor accesses its static memory (used both for data and programs) through 
the daughterboard bus. In the full IDA system, 64 daughterboards would be 
interconnected to a single motherboard. 

The CAAPP low-level processor is being updated according to recent ad­
vances in VLSI technology. A 256-PE chip is under fabrication with a 1.25-
/Lm geometry. 

8.3.1.2. Intermediate Communication Associative Processor 

The second layer in the IDA hierarchy consists of general-purpose 16-bit 
DSP chips (in the first prototype, Texas Instruments TMS320C25), chosen for 
their speed in arithmetic operations (at 5 million instructions per second, one 
such processor executes a multiply-and-accumulate operation in one machine 
cycle). Sixty-four DSPs, each with 256K of local memory make up the IDA 
prototype ICAP processor. The next release of the system will replace the 16-
bit DSPs with 32-bit ones, 50-Mflop components, and the local memory will 
be raised to 1 Mbyte. 

With respect to the Warwick machine, the designers of the IDA adopted 
a different approach to fulfill the requirements of intermediate-level vision 
tasks. The instruction set of the DSP and its arithmetic capabilities were consid­
ered very important for geometry-related operations. These operations are typi­
cally performed on tokens built from low-level groupings: line segments, shape 
features, etc. To compensate for the reduced interconnection capabilities of the 
DSP, a special interconnection network was designed around a custom VLSI 
chip, called the PARCOS chip (parallel communication switch). 

This chip8 implements a 32 x 32 crossbar switch with an internal configu­
ration memory for storing privileged interconnection patterns. The switch sup­
ports both point-to-point and broadcast communications. The configuration 
memory can be loaded with new configuration patterns without interfering with 
chip operations. A new configuration pattern can be activated dynamically with 
a single control memory write operation. The 64-input, 64-output interconnec­
tion network of the ICAP processor links the 5 Mbits/sec serial ports of the 
DSP with a two-stage network of PARCOS chips. The whole network is man­
aged centrally by the array control unit. 

The second version of the IDA system will no longer use the dedicated 
interconnection network, but will rely on high-speed direct memory channels 
implemented in the globally shared memory of the ICAP processors.4 



www.manaraa.com

Heterogeneous Hierarchical Systems 231 

8.3.1.3. Symbolic Processing Array 

The top level of the IDA hierarchy is in charge of symbolic processing. 
The target system will support artificial intelligence software paradigms, based 
on the blackboard concept, with a MIMD array of general-purpose serial proc­
essors. Connectivity with the lower ICAP will be realized through memory 
sharing on the video RAM located for this purpose on the daughterboards. 

In the design of the system, the highest level of the hierarchy groups the 
clusters in the daughterboards through a motherboard. A motherboard provides 
64 slots for connection with the daughterboards. This high-level master board 
will contain both the interconnection network of PAR COS chips for ICAP con­
nectivity and a third type of dedicated, special-purpose VLSI component, the 
"feedback concentrator" chip.9 

The feedback concentrator chip embeds the trees of the two associative 
data paths originating from the CAAPP chips in the daughterboards. It pro­
duces the final global signal some/none with a latency of one CAAPP machine 
cycle. Thus, the global OR signal is available to the ACU two machine cycles 
after instruction dispatching to the CAAPP. The feedback concentrator also 
delivers the global count from the daughterboards' local count with a mixed 
serial and parallel output. The 64 least significant bits of the local counts are 
fed to the feedback chip adder inputs, and the first low-order bit of the result 
is available at the serial output in a single CAAPP cycle. In the meantime, the 
high-order 6 bits are available at the parallel output. For multibit counts, the 
successive bits in the operands are fed to the concentrator chip that recirculates 
the partial result available at the parallel output. Therefore, the final count is 
available exactly one CAAPP cycle after the most significant bits of the local 
counts have been fed to the concentrator chip. 

The plans for the final SPA layer4 envisage the use of a commercially 
available multiprocessor. 

8.3.2. Array Control Unit and Programming Environment 

The IDA system is specially suited for a hierarchical control strategy. The 
symbolic layer is a self-supporting general-purpose MIMD multiprocessor that 
dispatches tasks on the lower layers for iconic related enquiries. The expected 
response time (around 10 p.,sec) of the SPA processor to the feedback from the 
lower layers is too long to allow direct control of the system from this level. 
Furthermore, the sustained speed of the CAAPP level and the fine granularity 
of the instructions of the bit-serial PEs require a dedicated controller. 

The array control unit is the subsystem that interfaces the SPA to the ICAP 



www.manaraa.com

232 Chapter 8 

and CAAPP as far as control is concerned. The tight connections between the 
layers of the IVA realized through dual-ported memories are used essentially 
for massive data exchanges rather than program downloading. However, a 
shared memory is used for transmission of tasks and for control between the 
SPA and the ACU. 

The ACU uses the VME bus to interface with the daughterboards, mainly 
to store the programs in the ICAP DSP RAMs and to initiate operations. At 
this level, the ACU is able to keep the ICAP under control through a standard, 
dedicated microprocessor (the plans are for a 68020 chip). Feeding the CAAPP 
is a much more demanding operation, and the ACU is therefore split into a 
macrocontroller and a microcontroller (a popular solution on most SIMD 
arrays). 

Control flow at the SIMD-SPMD level is managed using the some/none 
response from the motherboard and the count data path. The setup of the con­
figuration of the DSPs network is also an ACU task. 

As in all heterogeneous systems, setting up a productive environment for 
program development and applications execution is a very complex task. The 
first running prototype of the IVA system offers high-level extensions to C and 
to FORTH to program the CAAPP. Admittedly, such extensions require deep 
knowledge of the machine hardware. 

The designers of IVA aim at building a programming environment that 
hides the variety of processors and topologies of the system as much as possi­
ble. The targeted situation is one in which the programmer perceives the system 
as an augmented von Neumann machine with a massive intelligent memory. 
The goal is a single unifying model and language for programming the IVA so 
that programmers will not have to distinguish explicitly among the three lev­
els.4 As in the Warwick pyramid case, the object-oriented approach is the best 
option. It is not certain whether the object paradigm will be used at all levels 
of the machine or if some specialized communication libraries will be used to 
code message exchanges at the ICAP level. 

8.4. THE PASM 

The partitionable SIMD/MIMD system for image processing and pattern 
recognition (PASM) is a long-lasting design effort carried out by Siegel et 
al.lO· 11 to explore the benefits of a reconfigurable hierarchical structure, partic­
ularly suited to supporting both synchronously orchestrated (SIMD) and inde­
pendent (MIMD) computations. 



www.manaraa.com

Heterogeneous Hierarchical Systems 233 

8.4.1 Partitionable Two-Level Hierarchy 

An overall description of the system allows us to recognize two major 
processing subsystems, arranged in a two-level hierarchy: the parallel computa­
tion unit (PCV) and the microcontrollers unit (MC). If we include the external 
host driving the microcontrollers unit, we end up with a three-level system, as 
depicted in Figure 4.4. As discussed in Chapter 4, the heterogeneous hierarchy 
embedded in PASM can be ascribed to the loosely coupled family. Indeed, the 
PCV is linked by dedicated buses to the MCs, and the association between 
processors and microcontrollers is static. The PASM system is, however, fur­
ther enriched by a secondary storage subsystem that can be accessed both from 
the PCV and from the MC, so its classification as a loosely coupled system is 
somewhat inappropriate. 

The major novelty in the PASM system is the concept of system partition. 
The PCV is designed to contain N = 2n processors with a capacity to be recon­
figured as Q = 2q independent subunits under the control of Q proper subsets of 
microcontrollers. Each MC thus has to manage at the most NIQ slave proces­
sors in the PCV. In such a case, the system works according to the SIMD or 
to the Multi-SIMD paradigm. Furthermore, owing to the coarse granularity of 
the processors that make up the PCV, we can even reconfigure the system to 
operate as a single MIMD machine. Finally, a mixed-mode configuration is 
possible as well: the machine is split into two or more submachines, and each 
submachine can run in SIMD or MIMD mode independently of the others. 
Thus, the PASM architecture is actually a test-bed for implementing a rich 
variety of multiprocessing modes, from strict SIMD to SPMD, from Multi­
SIMD to MIMD. 

The PASM system was designed for a maximum configuration of 
N = 1024 processors in the PCV and Q = 32 processors in the MC unit. The 
actual running prototype is a scaled-down version of the full system: it has 30 
processors all in all. In the following we will concentrate on the processing 
subsystems that make up the two-level hierarchy in PASM. 

8.4.1.1. Parallel Computation Unit 

The low layer in the PASM hierarchy consists of N=2n processor-mem­
ory couples that support the computations. Each processor can either be a spe­
cialized component, specially suited to low-level image tasks, or a coarse-grain 
microprocessor (the running prototype uses MC68000 microprocessors locked 
at 8 MHz); it will be referred to in the following as the processing unit (PV). 
It has access to a local memory, which is used for data and program storage. 



www.manaraa.com

234 Chapter 8 

The local memory is logically split into two banks; this organization allows the 
double-buffering technique for data exchanges with secondary storage. 

The major component of the PCU is the interconnection network that links 
the PUs. Unlike other heterogeneous systems thus far considered, PASM 
adopts a flexible approach to PU interconnection and does not commit itself to 
a single topology. The interconnection network is a multistage subsystem based 
on the circuit-switching approach. Siegel investigated the use of different 
schemes 12 to design a reconfigurable network that suits the PASM requirement 
of system partitionability. 

A possible choice is a generalized cube network, which consists of 
n = log2 N stages: each stage has N inputs and N outputs, and the rearrangement 
of paths between the inputs and the outputs is executed by NI2 two-input two­
output interchange boxes. The boxes support four configurations: pass through, 
exchange, lower broadcast (lower input is connected to both outputs, upper 
input is discarded), and upper broadcast. One-to-one communications require 
n-bit address tags to set up the circuit in the network: stage j in the network 
processes the jth bit position in the tag. Longer tags are necessary to realize 
broadcast-type communications. 

Such a network can be partitioned into Q subnetworks, which are indepen­
dent of one another, to support the subdivision of the PCU into more subunits. 
The routing mechanism within each subnetwork follows the above-quoted algo­
rithm, with minor modification needed to comply with the separation. Actually, 
the PASM prototype embeds a fault-tolerant variation of this network, known 
as an extra stage network. 12 

The PCU can operate in SIMD, Multi-SIMD, or MIMD mode. In the 
second mode, each partition executes the same program distributed by the mi­
crocontroller(s) that manages the partition. Both in SIMD and in Multi-SIMD 
mode the system has to use the multistage interconnection network even for 
short near-neighbor data exchanges. The flexibility introduced by the network 
is better exploited in MIMD general-purpose communications than in the 
tightly orchestrated ones on SIMD mode. 

The granularity of the PUs used in the prototype allows us to speculate 
that a full-fledged PASM system operates in SPMD mode, rather than in SIMD 
mode. The synchronization of a set of standard microprocessors is a quite dif­
ferent task compared with the analogous synchronization of the custom-made 
PEs of typical SIMD-only array processors. However, the collection of status 
information for data-dependent condition handling is much more complex, 
since standard microprocessors do not have a status register accessible from the 
outside. The solution of such problems was one of the significant results of the 
PASM design effort. 



www.manaraa.com

Heterogeneous Hierarchical Systems 235 

To this purpose, the prototype PASM embeds support circuitry at every 
PU for interfacing with the MC. 13 This additional hardware consists of an in­
struction broadcast unit (IBU) and a condition code logic (CCL). The IBU 
activates the dispatching of SIMD instructions from the MC when a PU exe­
cutes a memory fetch from a special area of its local address space; the actual 
dispatching is carried out only when all the PUs that are enabled for this in­
struction have executed the fetch from memory operation (barrier synchroniza­
tion). The CCL conveys status information from the PUs to the MC. Although 
dedicated hardware speeds up the generation of the test in each PU, the proto­
col for the overall transfer is rather long. When measured it was seen to be a 
major source of overhead in the running time of conditional intensive algo­
rithms. 13 The situation in which more MCs belong to the same partition is even 
more complex. It will be briefly considered in the next section. 

8.4.1.2. Hierarchy of Microcontrollers 

The second layer of the PASM is made up using Q independent microcon­
trollers. Each microcontroller is itself a processor with local memory (a double­
buffering scheme is also adopted with the microcontrollers to ease the ex­
changes with the host computer) and manages a fixed number (NIQ) of PUs. 
The PASM prototype uses MC68000 microprocessors (we note that with this 
instantiation the PASM is no longer a heterogeneous machine, strictly 
speaking). 

The setting up of partitions in the system is constrained by the power-of-
2 subdivision but is otherwise free: any number R (1:::; R :::; Q) of partitions, or 
virtual machines, can be created by loading the memories of the Mes with 
replicated copies of the R programs. To support data sharing among microcon­
trollers of a partition, a special reconfigurable bus was proposed. Microcontrol­
lers and memory modules have access to the bus, which can be split into more 
independent units by special reconfiguration switches. It is thus possible to 
create electrically isolated regions of microcontrollers and memory modules 
with each region being associated with the corresponding PASM partition. 

Since partitions can contain different numbers of PUs, two types of ad­
dresses exist for individuating a PU: a logical address, unique within the parti­
tion, and a physical address, unique for the whole system. The mapping of the 
two addresses is done at compile time, when the programs specify the configu­
ration of the system they want to work with. 

Independently of the reconfiguration bus, PASM interconnects the micro­
controllers with a communication bus used for signaling and synchronization. 14 

Indeed, when the operative mode is SIMD (or even Multi-SIMD), aggregate 



www.manaraa.com

236 Chapter 8 

operations and global tests are executed in the PCU to produce status informa­
tion for the microcontrollers. Such status information is used for program flow 
control (the global-OR mechanism described in Section 5.2.3.1). Owing to the 
partition architecture of PASM, the generation of a single status signal valid 
for all microcontrollers within a partition requires a fairly complex protocol on 
the communication bus. Briefly, the microcontroller that initiates the exchange 
broadcasts the identification of the task and the local status value; all other 
microcontrollers that contribute to the same task write their local status infor­
mation on the communication bus data line in a wired-AND modality. This 
information can eventually be sensed from all participating microcontrollers. 
This protocol is handled completely from the MC layer. The host computer has 
no part in it, not even in a totally SIMD system configuration. 

8.5. ARRAY/NET PROJECT 

Another type of reconfigurable hierarchical system was proposed long ago 
by Uhr. The Array/Netl5 consists of a two-layered parallel machine designed 
to experiment with various forms of reconfiguration, among which is processor 
word size. 

Basically, the proposed Array/Net system consists of a huge number of 
simple processors, each with a small-width data path. When used for higher­
level computations, such processors are grouped to form fewer processors with 
a larger word length. This two-level hierarchy can be extended. Conceptually, 
the process can be brought to an extreme by starting with an array of bit-serial 
PEs, configured as a standard SIMD array processor. A first higher level is 
then obtained by configuring each set of N PEs as a single N-bit coarse PU; a 
second level consists of N 2-bit PUs in a number equal to l/N of the PUs in the 
second level; and so on. The result is a converging pyramid of ever more 
powerful processors. 

Even though only one layer of such a pyramid is active at a time, the 
increased granularity introduces more flexibility with regard to the processing 
mode. From a strict SIMD operation for the fine-grained PEs, the system can 
move to Multi-SIMD or even MIMD mode when operating at a coarser granu­
larity. This second type of reconfiguration, very similar in concept to that of 
PASM, requires a flexible network for communications among PUs. As the 
system name suggests, the basic topology supported in all system configura­
tions is the array, which is a two-dimensional mesh. 

Although the Array/Net never became a working prototype (the designers 



www.manaraa.com

Heterogeneous Hierarchical Systems 237 

maintain that the construction of the prototype was beyond what reasonably 
could be achieved with the $150,000 total budget available for the project in 
1979), the system was carefully designed up to board level. While the solutions 
chosen are today out of date on the technological side, the underlying motiva­
tions are still valid and have found a partial (though independent) realization 
in other machines. In the following, we give a very brief summary of the 
architecture proposed. 

The raw processing power of the Array/Net comes from a set of 512 4-
bit, bit-slice chips from the 2900 family. A pair of such chips (plus 16 kbytes 
of local memory) makes up an 8-bit slave processor. 

The first configuration of the system uses the slave processors in groups 
of 16. Each group is laid out as a 4 x 4 mesh: near-neighbor interconnectivity 
is realized through ad hoc registers. The local memories are used exclusively 
by the PUs as far as write operations are concerned, but are otherwise shared 
according to mesh topology. Each 4 x 4 mesh is driven by a "master" control­
ler that cycles through 64-bit microcode words. The controller memory is 
mapped in the slave local memory banks. The resulting 16 groups of master 
and slave processors are themselves arranged in a 4 x 4 mesh on a single dou­
ble-Eurocard board. The overall system therefore consists of a midsize mesh of 
16x 16 8-bit processors, operating in SIMD mode (obviously, 16 copies of the 
same program must be loaded in the memory of the master processors). A 
Multi-SIMD mode is also possible and only requires a partition of the system 
into disjoint sets of boards with each set operating in SIMD mode. 

The 16 boards of the systems can be configured as a single MIMD ma­
chine in which the master processors have the role of the PUs. The bit-slice 
approach to board design allows Array/Net to configure the master processors 
as 8-bit, 16-bit, or 32-bit processors. Actually, a master processor is made up 
of one or more slave processors, with total control over the 256 kbytes of local 
memory in its board. The PUs interconnection is primarily obtained through 
memory sharing at the borders of the groups of slave processors. Furthermore, 
a bus interconnects the masters between themselves and with an external host 
computer. The preferred processing mode for this system configuration is 
MIMD, since master processors have the granularity to support complex com­
putations. 

The targeted applications for the Array/Net cover both image processing 
and numerical intensive array processing operations. The lack of a parallel ac­
cess to the neighbors, when the system operates in SIMD mode, is a definite 
drawback in low-level vision tasks. The 8-bit architecture of the PE-PU was 
considered more effective for the overall performance of the machine. 



www.manaraa.com

238 Chapter 8 

8.6. CONCLUSIONS 

The four systems reviewed in this chapter present a good spectrum of the 
possible architectural configurations of heterogeneous hierarchical systems. 

As with the family of compact, fine-grained pyramids covered in Chapter 
5, the running prototypes are quite underscaled versions of the systems de­
signed. They can be considered "proof-of-concept" experimental machines 
that bring into being some of the most common concepts regarding the match 
between an architecture and the granularity of the targeted computation. 

The partition of such systems into closely coupled versus loosely coupled 
is represented in the prototypes on an equal basis. Interconnecting machine 
layers through shared memories seems more convenient (at least from the eco­
nomic point of view) than building specialized networks. But this pattern is not 
a general one if we consider general-purpose MIMD commercial systems. 

The programming environment for such heterogeneous systems is defi­
nitely a topic that requires extensive research. It is significant that one of the 
benchmarks actually run on these machines (PASM experiments on sorting14) 

was coded completely in assembly language. 

REFERENCES 

I. G. R. Nudd, T. J. Atherton, R. M. Howard, S. C. Clippingdale, N. F. Francis, D. J. Kerby­
son, R. A. Packwood, G. J. Vaudin, and D. W Walton, WPW: A multiple-SIMD architecture 
for image processing, Proc. 3rd lEE Conf. Image Processing and Its Applications, Warwick, 
1989. 

2. G. R. Nudd, D. J. Kerbyson, T. J. Atherton, N. D. Francis, R. A. Packwood, and 
G. J. B. Vaudin, A massively parallel heterogeneous VLSI architecture for MSIMD pro­
cessing, in Algorithms and Parallel VLSI Architectures (F. Deprettere and A. Van der Veen, 
eds.), pp. 463-472, Elsevier, Amsterdam (1991). 

3. D. J. Hunt, The AMT DAP-a processor array in a workstation environment, Comput. Syst. 
Sci. Eng. 2(4), 107-114 (1989). 

4. C. C. Weems, E. M. Riseman, and A. R. Hanson, Image understanding architecture: ex­
ploiting potential parallelism in machine vision, Computer 25(2), 65-68 (1992). 

5. C. C. Weems, A. R. Hanson, E. M. Riseman, D. Rana, D. B. Shu, and J. G. Nash, An 
overview of architecture research for image understanding at the University of Massachusetts, 
Proc. IEEE 10th Int. Conf. Pattern Recognition, Vol II, Atlantic City, NJ, 1990, pp. 
379-384. 

6. C. C. Weems, Architectural requirements of image understanding with respect to parallel 
processing, IEEE Proc. 79(4), 537-547 (1991). 

7. D. B. Shu, G. Nash, and C. Weems, Image understanding architecture and applications, in 
Advances in Machine Vision (J. L. C. Sanz, ed.) pp. 296-355, Springer-Verlag, Berlin and 
Heidelberg (1989). 



www.manaraa.com

Heterogeneous Hierarchical Systems 239 

8 D Rana and C C Weems, The ICAP parallel processor commumcatIon sWitch, Proc IEEE 
Int Symp CIrCUIts and Systems, Portland, OR, 1989, pp 126-129 

9 D Rana and C C Weems, The IVA feedback concentrator, Proc IEEE 10th Int Conf 
Pattern RecogmtIon, Vol II, AtlantIc City, NJ, 1990, pp 540-544 

10 H J Siegel, L J Siegel, F C Kemmerer, P T Mueller, H E Smalley, and S D Smith, 
PASM a partItlOnable SIMD/MIMD system for Image processIng and pattern recogmtlOn, 
IEEE Trans Comput C-30(12), 934-947 (1981) 

II H J Siegel, J B Armstrong, and D W Watson, MappIng computer-vIsIOn-related tasks 
onto reconfigurable parallel-processIng systems, Computer 25(2), 54-63 (1992) 

12 H J SIegel, InterconnectIOn Networks for Large-Scale Parallel Processmg Theory and Case 
Studies, McGraw-Hill, New York (1990) 

13 S A FIneberg, T L Casavant, and H J Siegel, Expenmental analYSIS of a mixed-mode 
parallel architecture USIng bltomc sequence sortmg, J Parallel DlStnb Comput 11(3), 
239-251 (1991) 

14 T Schwederskl, W G NatIOn, H J Siegel, and D G Meyer, DeSign and ImplementatIOn of 
the PASM prototype control hierarchy, Proc Second Int SupercomputIng Conf , InternatIOnal 
SupercomputIng InstItute, St Petersburg, FL, 1987, pp 418-427 

15 L Uhr, J Lackey, and L Thompson, A 2-layered SIMD/MIMD parallel pyraDlldal 'arrayl 
net', Proc Workshop on Computer Architectures for Pattern AnalYSIS and Image Data Base 
Management, 1981, pp 209-216 



www.manaraa.com

Chapter 9 

Programming a Hierarchical Structure 

This chapter reviews the programming tools that have been designed to work 
on hierarchical architectures. The topic of a high-level language for program­
ming pyramids is central to the discussion. While the data-parallel model typi­
cal of massively fine grained architectures can be used with the pyramid as 
with any other topology, the hierarchy introduces other issues. As might be 
clearly seen, programming can be a complex task in these systems, since at 
least concurrence among different levels of the pyramid (the multi-SIMD 
model) has to be taken into account. A few examples of pyramidal languages 
will be described, with particular attention to the handling of parallel con­
structs. The chapter closes with a discussion of the controlling environment. 

9.1. LANGUAGES: AN INTRODUCTION 

Programming a parallel hierarchical structure has a number of similarities 
to programming massively parallel systems, but it is otherwise a much more 
difficult task. Indeed, the management of concurrence among levels (in multi­
SIMD systems) or the handling of heterogeneous environments in machines 
composed of different processors according to the level introduces complex 
issues that touch both the programming model and the controlling environment. 
In this chapter, both issues will be discussed, though with different depths. 

The programming model in the hierarchical domain inherits much from 

241 



www.manaraa.com

242 Chapter 9 

parallel languages designed for generic massively parallel architectures. Since 
the construction of the first parallel systems (such as array processors of the 
CLIP family, the MPP, DAP, etc.), the language issue has been tackled first 
in a pragmatic way, by building a macrolevel assembly language capable of 
managing the intricacies of the target architecture. However, the designers of 
such systems have immediately perceived the stringent need for a truly high­
level language, offering parallel constructs both for variable declaration-alloca­
tion and for program flow control. The available commercial systems are 
equipped with advanced programming environments, mainly based on standard 
high-level languages such as Fortran, C, C++, and Lisp. 

The programming model that dominates by far is "data parallelism") as 
opposed to "task parallelism." Algorithms are expressed as a sequence of ma­
nipulations on data aggregates; each piece of information in the aggregate is 
processed with the same operation. This type of processing maps very well on 
fine-grained massively parallel architectures. Yet it is by no means limited to 
parallel systems. Indeed, APL 2 and later dialects are constructed exactly to 
express operations on arrays as primitives of the language and have been imple­
mented mainly on serial computers. Hierarchical coarse-grained systems ad­
dress more closely the control environment necessary to the implementation of 
task parallelism. The handling of parallelism usually adheres to the communi­
cating sequential processes (CSP)3 model and uses standard concurrent lan­
guages. 

The object-oriented paradigm is also suited to coarse-grained parallelism, 
with a special emphasis on heterogeneous systems. The mechanism of classes, 
inheritance, and polymorphism can be used to structure uniformly at a high 
level the tasks running on quite different processors. The details of the imple­
mentation of the "methods" are hidden to the programmer and can be opti­
mized to exploit at the best the processors. 

The expression of parallelism within the programming model considered 
can be approached in different ways. A first issue is the visibility of the topol­
ogy of the target system. A second problem is the semantics of control flow 
statements, if any at all. We briefly discuss these items to set a common ground 
for the analysis of the high-level languages proposed and/or built for fine­
grained pyramid systems. 

9.1.1. Collection-Oriented Languages versus 
Processor-Oriented Languages 

Languages supporting data parallelism can be split into two classes: collec­
tion-oriented, according to the definitions of Sipelstein and Blelloch,4 and PE 



www.manaraa.com

Programming a Hierarchical Structure 243 

oriented, following somewhat the motivations of the designer of PYR-E.5 The 
discriminating features are the visibility of the topology of the parallel systems 
and the availability of dedicated parallel constructs for controlling the flow of 
the program; however, they do not create a true partition, because such defini­
tions cannot be stated on a formal basis. 

In collection-oriented languages, the data aggregate, called a collection, is 
a language primitive representing the atomic unit of data; the other class of 
primitives is composed of the operations, which take the collections as op­
erands. The use of iterative constructs, such as loops, to act on the collections 
by examining each constituent element is explicitly banned from the language. 
With this rough characterization, arrays declared in the "parallel array type" 
construct of Parallel Pascal,6 parallel variables declared within the "shape" 
format of C* ,7 arrays in Fortran 90, and paralations in Paralation Lisp,8 are all 
examples of collections. A more detailed analysis of this concept allows us to 
distinguish among simple and nested collections (the latter allowing an element 
to be a collection itself), homogeneous and nonhomogeneous collections, and 
even ordered versus unordered collections (instances of unordered collections 
are sets, while arrays with element indexing introduce an ordering among the 
elements of the collection). 

Operations on collections are split into "apply-to-each" and "aggregate" 
functions. The first class transforms the collection on an element-per-element 
basis, using the chosen function consistently on each element; the output is 
another collection. The second class takes on the whole collection as operand 
and produces either another collection with a different structure or atomic scalar 
values. Well-known examples of aggregate functions are set operations, permu­
tations, reductions, and scans. 9 

In collection-oriented languages all syntactic constructs are based on ma­
nipulation of collections. When implemented on actual parallel systems, such 
languages constrain the structures of the collections to resemble the underlying 
topology. The programmer perceives the topology of the parallel machine only 
through the data structures by which algorithms are coded. 

A typical situation is the synchronous transmission of data from each proc­
essor to one of its neighbors. In terms of collection manipulation, this task 
involves a permutation; when the collection takes the form of an array, 
the permutation, usually called shift, affects one of the dimensions of the 
array. 

A more irregular data movement routine, such as the random access write 
(RAW) defined for PRAM,1O hides even more the underlining topology. Basi­
cally, this primitive considers a set of sending PEs and a set of receiving 
PEs: each sender forms a packet containing the data and the address of the 



www.manaraa.com

244 Chapter 9 

target PE. The intended result of this "generalized pennutation" is the 
delivery to each target PE of the data addressed to it, with a mechanism to 
solve collisions. In tenns of collections, such a primitive uses two instances of 
collections, the data and the indexes (address); the strategy that implements 
this primitive changes on different parallel architectures according to the 
underlining topology, but it is (almost) completely transparent to the pro­
grammer. 

The second class of languages, processor oriented, takes the opposite 
point of view. 5 They express algorithms as explicit representations of the activi­
ties of the PEs, including both the management of local resources (registers, 
memory, etc.) and of the data exchanges through a known and visible intercon­
nection network. For example, synchronous data transmissions are specified by 
naming explicitly one of the dimensions that make up the neighborhood of 
each PE within a special neighbor access routine: in a system that supports a 
multidimensional grid topology, there is a "shift along grid dimension" func­
tion at least for each dimension physically mapped in the parallel architecture. 
In general, irregular data movement routines, such as RAW, are not primitives 
in such languages because they are decomposed in the elementary lower-level 
functions that "navigate" through the topology. 

Since the programmer is not constrained to the data structures of collec­
tion-oriented languages, PE-oriented languages are intrinsically more flexible 
and allow one to write programs based on communication topologies other than 
the physically implemented ones. This is much more difficult when the expres­
sion of PE interconnection is concealed in the structure of the collections and 
of the associated pennutations. 

Such increased flexibility has a cost. Indeed, it cannot be denied that pro­
grams coded in PE-oriented languages tend to be at a "lower level" than their 
counterparts written in collection-oriented languages. According to Mehat,5 
representative languages in this class are PYR-E (described in Section 9.1.5) 
and CM-Lisp by Thinking Machine Corporation. HCL C (described in Section 
9.1.4) can also be included. 

Variable declaration is a main issue in both types of languages. Within 
collection-oriented languages, an association with the parallel environment is 
implicit in the definition of variables as collections. Standard data types are 
used to characterize collection elements; moreover, variables declared with the 
usual typing mechanism are implicitly associated with the controlling serial 
environment. An explicit declaration of the environment (serial or parallel) at 
variable declaration is required in PE-oriented languages, since data aggregates 
are not supported as such. 



www.manaraa.com

Programming a Hierarchical Structure 245 

9.1.2. Semantics of Parallel Constructs 

The programming style in the two classes just described tends to be some­
what different, mainly because of the visibility of the target architecture. Yet, 
the data-parallel programming modality sets a common ground to both lan­
guage types, when we consider the extensions to the languages required to give 
a proper meaning to the control flow constructs. 

A basic assumption of the data-parallel model is that the transformations 
on data elements (i.e., the activities of PEs on local data) are_uniform (i.e., are 
specified by a single source of instructions). From the point of view of system 
architecture, the language has to support SIMD/multi-SIMD [or at most Single 
Program Multiple Data (SPMD)] multiprocessors modalities. The controller is 
the only source of instructions and the only actor capable of managing control 
flow in the program. With the definitions introduced in Section 5.2.2.4, this 
assumption does not allow for operation autonomy. The control flow structures 
of parallel languages must therefore be defined so as to specify unambiguously 
the interactions among the processors and the controller(s). 

Parallel languages, based on standard Von Neumann languages such as 
Pascal, C, and so on, come with only a subset of such constructs. The reason 
for this limited implementation is the difficulty of creating a clear semantics 
for each of them. In what follows, we summarize one of the few works 1 1 which 
specifically addresses this issue. The approach is formal and is proposed here 
as a reference. More pragmatic approaches have been followed in the design 
of the languages of the pyramid systems discussed in later sections. 

Levaire and Bougell introduce a set of very simple languages, named 5£, 
to be used in the SIMD model. The targeted systems consist of a single control­
ler, a set of processing elements which exchange data through near-neighbor 
interconnections (the topology of such a network is irrelevant to the definition 
of the languages), a partial implementation of operation autonomy, which cre­
ates the context (i.e., the set of PEs enabled to execute the current instruction), 
and the global OR feature, which conveys to the controller a status signal from 
the whole set of PEs. 

The first language includes six basic primitives, namely three instructions 
(the empty instruction skip, the assignment operator: =, a near-neighbor in­
struction shift), and three control structures (the sequence ;, the iteration 
while ••• do •.• end, and the conditional execution where ••• do ••. end). The nota­
tion of the language is the following: variables beginning with a capital letter 
such as X are parallel-that is, they indicate an aggregate that is instantiated in 
every processor; lowercase variables are serial and exist only within the con-



www.manaraa.com

246 Chapter 9 

troller; X I u indicates the instantiation of X on the processor whose address is 
u; the parallel constants Tt and Ff stand for the logical values true and false 
when instantiated on every processor. 

The semantics of the language 1:, is constructed along the guidelines of the 
structured operational semantics. 12 It consists of a set of transitions (indicated 
by~) between states; each state is a triplet (P, u, s), where P is the program 
to be executed (0 denotes the empty program), u is the environment that asso­
ciates values with variables, and s is a stack of contexts-that is, a parallel 
aggregate whose elements only take Boolean values which represent the activ­
ity status of the individual PEs. The stack can be manipulated only through the 
usual Push(s) and Pop(s) operations. Moreover Top(s) reads the top of the stack 
without modifying the stack. The evaluation of the instruction I in the environ­
ment u is denoted by [I] u. 

Let u be the address of the generic PE. The formal description of the 
language is the following. 

o Definition of context 

enabled(u) ~ (Top(s» I u = true (9.1) 

With this definition, the top of the stack defines the current set of enabled PEs. 
o Definition of skip 

(skip, u, s ~ ( 0, u, s) (9.2) 

Skip is the no-op code and the transition associated with its execution 
leaves unchanged both the environment (variables) and the stack (context). 

o Definition of the assignment : = 

where 

u'(X) I u=([Y] u) I u 

u'(Z) I u = u(Z) I u 

(X :=Y, u, s) ~ (0, u', s) 

if enabled(u) 

if Z~X or not(enabled(u» 

(9.3) 

(9.4) 

The assignment modifies the environment u according to the operation Y on 
enabled processors only. The second clause specifies that the only variable 



www.manaraa.com

Programming a Hierarchical Structure 247 

affected is the one on the left-hand side of the assignment. No side effects on 
the other variables are possible. The stack remains unchanged. 

• Definition of the near-neighbor primitive shift 

where 

(T' (X) I u = (T(X) IdO(u) 

(T'(X) I u = (T(X) I u 

(T'(Z) I u = (T(Z) I u 

(shift X along d, (T, s) ~ (0, (T', s) 

if enabled(u) 
if not(enabled(u» 
if Z;6X 

(9.5) 

(9.6) 

The first clause specifies that the source of the data is the processor at location 
dO(u)-that is, in the opposite direction with respect to d. The source can be 
disabled, because the semantics only requires the destination to be active. This 
is indeed a "read form neighbor" operation. The stack remains unchanged. 

then 

• Definition of sequence ; 
Given the rule 

(P, (T, s) ~ (P', (T', s') I (0, (T', s') 

(P; Q, (T, s) ~ (P'; Q, (T', s') I (Q, (T', s') 

(9.7) 

The symbol I indicates an alternative. The first rule indicates that a program P 
can be transformed into a new one, P', or finished (empty program 0). The 
definition of the sequence P; Q stated in the second rule is self-explanatory. 

• Definition of iteration while ••. do ••. end 
There are two situations: 

(3 u {([C] (T) I u and enabled(u)}) = true 

(while C do Pend, (T, s) ~ (P; while C do Pend, (T, s) 

(3 u {([C] (T) I u and enabled(u) }) = false 

(while C do Pend, (T, s) ~ (0, (T, s) 

(9.8) 

(9.9) 

The first clause declares that the controlling condition C is evaluated and, if 
found true in at least one active processor, causes the execution of the con-



www.manaraa.com

248 Chapter 9 

trolled block P. Otherwise (second case), the block P is replaced with the 
empty program 0; that is, the block is removed. The predicate (3 u {([C] (T I u 

and enabled(u) }) is the formal definition of the global OR mechanism (see 
Section 5.2.3.1). We stress that the context stack is completely unaffected by 
this construct. The restriction of context, if any, is operated by the executed 
block P, as well as the modification of the environment (T which affects the 
evaluation of the terminating condition C. 

• Definition of conditional execution where ... do ... end 

(where C do Pend, (T, s) ~ (begin Pend, (T, s') 
s' = Push(Top(s) and ([C] (T), s) 

(9.10) 

The conditional execution of a block P according to the parallel Boolean vari­
able C restricts the context Top(s) evaluating [C] (T and modifies the stack s 
accordingly. The begin ... end construct is used to formalize the effect ofremov­
ing block P. Given the rule 

then 

(P, (T, s) ~ (P', (T', s') 

(begin Pend, (T, s) ~ (begin P' end, (T', s') 
(begin ° end, (T, s) ~ (0, (T, Pop(s)} 

(9.11) 

The second clause specifies that on removing the block P (that is, when block 
P is transformed into the empty program), the system restores the context active 
prior to entering the where construct. 

The novelty in the semantics of this very simple language is the normaliza­
tion of the parallel constructs in terms of manipulation of a single parallel data 
structure, the stack of contexts. The language could be extended with other 
more complex constructs. But the major contribution of this operational defini­
tion is in the treatment of the exit statements, which modify the flow of control 
from within block constructs. 

Levaire and Bouge augment the language to include an "escape" state­
ment that generalizes the break and continue statements of serial languages. 
We remember that the break statement causes the flow of instructions to exit 
immediately the current block, with no regard for the controlling condition. 
The continue statement instead causes a jump to the end of the block, with the 
subsequent reevaluation of the controlling condition. 



www.manaraa.com

Programming a Hierarchical Structure 249 

The extended language ;t,e uses the following definition for the escape 
statement. 

• Definition of escape 

(escape, (T, s) ~ (0, (T, s') 
s' = Push(Ff, Pop(s» 

(9.12) 

The meaning of an escape is to disable all the currently active processors 
(the stack is popped once and subsequently loaded with the parallel constant Ff 
false). Since the escape is executed within a block, on exiting the block (which 
happens when the empty program is executed), the system pops (see Eq. 
(9.11) the false parallel constant Ff and thus activates the context immediately 
external to the block. 

The escape statements affect only the top of the stack. Accordingly, no 
exit from nested block constructs is possible, because such an exit would re­
quire handling layers located deeper in the stack. The following program frag­
ment is ambiguous, since it is not clear which block the escape statement is 
supposed to exit, either the deeper only, or both. 

where BI do 
PI; 
where B2 do 

end 
end 

To solve the ambiguity, Levaire and Bouge introduce labeled blocks and 
labeled escape statements, wherej and escapej. The semantics of the resulting 
language are constructed on a modified stack of contexts. Each entry in the 
stack contains the context, along with the label of the closest enclosing block. 
The semantics of escapej consists of the recursive analysis of the stack. During 
this analysis, all contexts created after the first context with label i are popped, 
including the i. This restores the context of the block immediately external to 
block i. 

Beside being a formal definition of the semantics of parallel constructs, 
the analysis of Levaire and Bouge can also lead to efficient extensions of ex­
isting parallel languages, whenever such languages lack some of the parallel 
constructs. In Ref. 11 some examples are given in the C* language. In the 



www.manaraa.com

250 Chapter 9 

following, the high-level languages of the pyramidal systems so far built or 
proposed are described with reference to the 5£ language parallel constructs. 

A different formal treatment has been introduced by Clermont et al. \3 This 
approach consists of the translation of a parallel program into a program con­
taining only serial control statements and instructions to handle parallel Bool­
ean variables which are the equivalent of the context herewith introduced. A 
few examples of the approach are given in Section 9.1.5 in the description of 
the PYR-E language. 

9.1.3. HCL, a Pyramid Algebra 

The notion of a pyramid algebra is one of the major contributions of Tani­
moto14 to the field of languages for hierarchical systems. His proposal, while 
also used to derive an assembly language for the PCLIP pyramid prototype 
designed and built (see Section 5.2.4.2) at Washington University, originally 
aims at the definition of an unambiguous formalism to express algorithms for 
hierarchical systems. 

Hierarchical cellular logic addresses hierarchical systems that fall in the 
broad family of cellular systems. In the naming convention of this book, this 
perfectly translates to homogeneous compact systems (see the taxonomy of 
Chapter 4). Within this class, HCL offers a tool to formulate precisely and 
concisely algorithms in a rather machine-independent way. 

The HCL pyramid algebra will be described in the following five subsec­
tions; the first gives some preliminary definitions, the second introduces the 
primitive operators, called cellular logic operators (CLOs), the third expands 
on the latter with some advanced operators that can be consistently used at a 
somewhat higher level of expressiveness. The fourth subsection highlights 
the relationship between HCL and mathematical morphology. Although de­
fined to be an algebra, HCL allows one to express rather complex algorithms. 
A hint to the implementation of a few representative ones is given in the fifth 
subsection. 

9.1.3.1. Preliminary Definitions 

The basic notion underlining the HCL construct is that of hierarchical 
domain. A hierarchical domain is a set of cells, where each cell is defined by 
a triple (k, i, j,); the obvious interpretation of such a triple is that cell (k, i, j) 
is located on level k, at row i and column j of the mesh which makes up that 
level. This definition implicitly assumes a mesh topology for the set of cells of 



www.manaraa.com

Programming a Hierarchical Structure 251 

a level; while this is the most common assumption in homogeneous hierarchies, 
alternative definitions are possible with different tessellations of the plane. 15 A 
hierarchical domain of L + I levels contains cells (k, i ,j) such that 05 k 5 L, 
05 i < 2k, 05 j < 2k. Level 0 is the vertex of the domain, while level L is the 
bottom layer of cells. 

The definition of hierarchical domain is completed by the notion of hierar­
chical neighborhood of a cell-that is, of those cells adjacent to the "home" 
one in the same level according to 8-connectivity and adjacent in the level 
above and below according to the quad-tree topology. Therefore, the hierarchi­
cal neighborhood of a cell consists of 13 more cells as depicted in Figure 5.4. 

In HCL, the basic "object" available is the pyramid. A pyramid is defined 
as a function that maps each cell of a hierarchical domain to a value. Two 
cases are special, namely bit pyramids and byte pyramids: in the former, 
the codomain is [0,1], in the latter [0-255]. Among the set of possible 
pyramids, constant pyramids are those functions that produce the same value 
everywhere in the hierarchical domain (e.g., 1 stands for the constant pyramid 
of value 1); a peculiar case is that of plane pyramids, which are binary 
pyramids with a value of 1 on a single level k and zero elsewhere, and are 
denoted Pk • 

An ancillary definition to hierarchical neighborhood is that of pattern. A 
pattern is a function that maps the hierarchical neighborhood of a cell into a 
set of values, each drawn from the set [0, 1, D]. The value D is a notational 
convention for a "don't care" value, and some of the elementary operators to 
be described work on the extended domain [0, 1, D]. 

9.1.3.2. Elementary Operators 

Pyramids are not data objects within HCL, although they do produce val­
ues in hierarchical domains; so, rather than operators on pyramids, one should 
properly speak of functional composition. To make the discussion less verbose, 
the term operator will be used in the following in the usual interpretation; 
while formally not correct, this assumption should not diminish the coherence 
of the presentation. 

Elementary operators are the core of the pyramid algebra. A minimal set 
includes two special-purpose cellular logic unary operators AND_MATCH 
and OR-MATCH, the standard Boolean NOT, and binary operators AND, 
OR, and restriction. As customary, the derived difference -, XOR, and 
NAND operators are also available. The two cellular logic operators have the 
following syntax: 



www.manaraa.com

252 

AND_MATCH(Pattern, BiLPyramid) 
OR-MATCH(Pattern, BiLPyramid) 

Chapter 9 

(9.13) 
(9.14) 

While defined on two operands, such operators actually work on a single 
bit pyramid and can thus be considered unary transformations. Their interpreta­
tion has already been anticipated in Chapter 5, in the description of the CLOs 
of the PCLIP pyramid prototype. It is repeated here briefly for convenience. 
The output of the AND_MATCH operator is a bit pyramid: the value at a cell 
is 1 iff all the couples of values of cells and associated pattern digits in the 
hierarchical neighborhood are matched or the pattern digit is D; the output 
value is 0 if at least one couple has a mismatch. The bit pyramid which is the 
output of the OR-MATCH operator has value 1 at those cells where at least 
one couple of values match, provided that the pattern digit is different from 
the "don't care" condition D; the output cell has a value of 0 if no such 
match occurs. 

The other unary and binary operators have the usual interpretation. The 
"restriction" operator instead deserves a few comments. It is a binary operator 
that applies a functional transformation F( ) to a generic pyramid X (binary or 
byte), according to a controlling binary pyramid Q. denoted with the follow­
ing syntax:14 

[F\Q](X) = (F(X) n Q) U (X n - Q) (9.15) 

That is, the functional transformation F(X) is carried out only where the 
binary pyramid Q gives a value of 1, while the previous value of X is retained 
elsewhere. This notation captures the semantics of the enabling-disabling 
mechanism typical of SIMD homogeneous architectures. It is the equivalent of 
the where .•. do ••• end construct for conditional execution of the formal lan­
guage 5£ introduced in Section 9.1.2. 

The generic functional transformation F( ) can be a standard Boolean oper­
ator as well; so it is possible to write the XOR operator also as a restriction of 
a unary NOT operation: 

[- \Q] X = (- X n Q) U (X n - Q) (9.16) 

While in this case [- \Q] X is equivalent to [ - \X] Q. the restriction operator 
is not commutative in the case of a general transformation F( ). 



www.manaraa.com

Programming a Hierarchical Structure 253 

9.1.3.3. Advanced Operators 

The operators defined in the previous section can be used to obtain more 
powerful pyramid transformations by functional composition. It is useful to 
introduce a set of shorthand conventions to denote such functional compositions 
and call them advanced operators. 

The first advanced operator considered is the iteration of a function F by 
a finite number n of compositions: 

roo =F(r-1(X)) where F1(X) = X (9.17) 

One can also define the transitive closure F*( ) of the functional transformation 
F( ) of pyramid X as 

F*(X) = {Fm(X) 
undefined 

if 3 m : Fm(X) = Fm + 1 (X) 

otherwise 
(9.18) 

The transitive closure operator is a generalization of the recursive near­
neighbor operation introduced in Chapter 5: indeed, the transformation F( ), 
although based on local computation, is not limited to Boolean near-neighbor 
operations but can be any valid HCL transformation, with X being any pyra­
mid, not just a bit pyramid. The iteration of F( ) is carried out until a stable 
state is reached; situations exist in which F*( ) is not defined, because the 
transformed pyramid switches between configurations at successive applications 
of F( ). 

An example of transitive closure that does terminate in a finite number of 
steps is 

[OR-MATCH(Pattern_Children)\(1- QL)]*(X) (9.19) 

This expression takes as input a bit-pyramid function X, applies to it the neigh­
borhood operator OR-MATCH with the pattern Pattern_Children specifying 
quad-tree cells in the lower layer of the hierarchical neighborhood of the home 
cell, restricts the transformations to the values above the base (1- QL), then 
iterates until no changes occur, thus building an "OR" pyramid out of the 
values in the base of pyramid X. Because the transformation extends upward 
the information in the base, it is bound to terminate after at most L iterations 
and could therefore also be written as 



www.manaraa.com

254 Chapter 9 

(9.20) 

This example introduces other advanced constructs. They are used for 
building pyramids from binary images. Given a bit pyramid B defined to be 
zero in the hierarchical domain except for level L, the "AND" pyramid and 
the "OR" pyramid are defined by 

ANDJYR(B) = [AND_MATCH(Pattern_Children)\(1- QL)]L(B) (9.21) 

ORJYR(B) = [OR-MATCH(Pattern_Children)\(1- QL)]L(B) (9.22) 

The first expression generates a pyramid by mapping disjoint connected 
components in the base level into disjoint connected components in upper lev­
els until a level is reached where they are eliminated. The apex takes the value 
1 iff B = QL' The second construct instead tends to merge isolated components 
and always produces a bit pyramid up to the vertex of the hierarchical domain. 
Another way to see these operators is to consider them an instance of the larger 
class of COUNT_OF pyramids: a COUNT_OF pyramid is a bit pyramid in 
which a cell is set to 1 if its extended neighborhood in the lower layer has a 
specified number of cells set to 1. If the extended neighborhood is limited to 
the quad-tree topology, as is the case with pyramids in HCL, at most four 
COUNT_OF pyramids are possible: the COUNT_OF_l pyramid is the OR 
pyramid and the COUNT_OF_4 is the AND pyramid. The other two COUN­
T_OF pyramids can be obtained with slightly more complex HCL constructs. 

The operators just described can in tum be used to define other advanced 
operators, which are based on a mixed flow of processing, as opposed to the 
bottom one of the COUNT_OF pyramid. The basic operator for top-down 
processing is named Project( ) and can be defined by 

Project(X) = AND_MATCH(Pattern_Parent, X) (9.23) 

where Pattern_Parent is 1 at the "parent" cell and D at all other cells. The 
expression has the effect of copying the value of the "parent" cell at the 
"home" one. Project( ) can be combined with the bottom-up pyramid building 
operators to define two more complex operators, where the flow of data in­
volves both upward and downward data movements: they are the pyramidal 
overture of order k and the pyramidal Jermeture of order k. 

The pyramidal overture of order k is defined as 



www.manaraa.com

Programming a Hierarchical Structure 255 

OvertureiX) = Projed (AND-PYR(X)) (9.24) 

With k set to I, the effect of pyramidal overture is to clean the binary image 
resulting from AND-PYR (0) of those I-cells that have O-siblings. Further 
iterations remove more I-cells. 

The pyramidal fermeture of order k is defined as 

FermetureiX) = Projed (OR-PYR(X)) (9.25) 

and its effect is complementary to that of Overturek(X), since in this case any 
I-cell causes its siblings to become I-cells as well. 

9.1.3.4. HCL and Mathematical Morphology 

As already anticipated in Chapter 5, in the discussion of the CLOs which 
are the embodiment in the PCLIP system of HCL, a close relationship exists 
between mathematical morphology 16 and the pyramidal logic just described. 
This relationship is discussed here to a certain extent. 

The basic transformation of mathematical morphology is Minkowsky's 
"hit-and-mJss" transform. It is defined as follows: let X be a region to be 
analyzed, X its background, B the structuring element partitioned into two sub­
elements BI and B2 so that B1UB2=B and BlnB2=0. Moreover, it is possible 
to define the translation of B that maps the reference point to a given point z 
and denote it with Bz • The hit-and-miss transform of the region X by the struc­
turing element B is the set of point z for which the following holds: 

X + B = {z : B~ C X, B; C X} (9.26) 

The interpretation of this transform is straightforward. The well-known 
"erosion" and "dilation" operators can be derived from the hit-and-miss trans­
form. The "erosion" of X with a structuring element B is the special case of 
hit-and-miss in which BI =B and B2=0. 

The matching operators of HCL can be referred to mathematical morphol­
ogy in the following way. The support of the transformations, instead of the 
continuum bidimensional plane, is a digitized three-dimensional space. The 
structuring element B is confined to the set of cells previously defined as a 
hierarchical neighborhood, with the origin chosen in the "home" cell. These 
cells are now partitioned into three subsets, namely BI, B2, and BD: BI is the 



www.manaraa.com

256 Chapter 9 

set of I-cells, B2 is the set of O-cells, and BD is the set of cells where the 
"don't care" condition D is specified. With this choice, the AND~ATCH 
(Pattern, X) operator can be restated as the hit-and-miss transform of the bit 
pyramid X by the structuring element Pattern: 

(9.27) 

The set BD is simply excluded from the structuring element used in the 
execution of the hit-and-miss transform. Due to the completeness of the hit­
and-miss operator in mathematical morphology, the AND~atch can be used 
in HCL to implement all the canonical operators. 

In accordance with the stated equivalences, it can be said that HCL is a 
special generalization of the basic operators of mathematical morphology, with 
extensions to hierarchically structured digitized spaces. 

9.1.3.5. Examples 

The application of the elementary and advanced operators of HCL allows 
us to efficiently code even algorithms of moderate complexity. Tanimoto 14 

gives a number of examples, among which are quad-tree construction, bit 
counting, binary edge detection, bright spot detection, thresholding, and me­
dian filtering. One such case is adapted here to highlight the transitive closure 
of a functional transformation and to stress the importance of the hierarchical 
domain. 

Let us the consider the problem of labeling the connected components of 
a binary image I. We assume that we have available one byte pyramid P, 
which is zero except for the base level, where each cell has a distinct value 
(e.g., the concatenation of its i,j coordinates; such a value can be easily ob­
tained through HCL constructs). Also, we assume that we have defined a byte­
valued function MAX (Pattern, B) that takes as input a byte pyramid B and a 
pattern and that produces as output a byte pyramid which has at each cell the 
maximum value of cells in B belonging to its neighborhood as restricted ac­
cording to Pattern (the MAX) function can be easily expressed through HCL 
constructs, but is omitted for brevity). Then the following expression labels the 
connected regions of the input binary image I: 

[MAX (Pattern_Brothers) (QLn/)*(P) (9.28) 

where Pattern_Brothers specifies the 8-connected cells belonging to the same 
level as the home one. It is easily verified that each connected component in I 



www.manaraa.com

Programming a Hierarchical Structure 257 

receives as label the largest value of P contained within the region itself. The 
actual number of iterations depends on how compact each region is and is 
roughly proportional to the diameter of the region. Indeed, if the connected 
components are quite compact (no holes or elongations), it is worthwhile ex­
ploiting a hierarchical mode of propagation that speeds up the labeling process. 
To do so, one first builds the AND pyramid of the input image I and then lets 
the MAX( ) function propagate its values within the hierarchical connected 
domains having their support in I in the base level. The resulting HCL expres­
sion is 

[MAX(Pattern_ALL )\AND-PYR(I)] *(P) (9.29) 

where Pattern_ALL identifies the complete hierarchical neighborhood of the 
"home" cell. This is an instance of the principle of using the pyramid topology 
to speed up data transfers through hierarchical links. 

9.1.4. HCL and the C Language 

Tanimoto's pyramid algebra introduced in Section 9.1.3 allows us to de­
scribe pyramid algorithms concisely and in a rather machine-independent way. 
However, it cannot be considered a language in the usual sense because it lacks 
many of the features common in programming languages, such as explicit type 
definition, variable declarations, and the control structures for structuring pro­
grams. 

An attempt to embed its basic constructs in a standard serial language has 
been pursued by Pfeiffer,16 who chose the C language as the host environment. 
The motivations for this effort are to provide both the concise algorithms de­
scription possible through HCL and the more readable format of a program 
coded in a well-known and well-understood standard language. 

The approach chosen by Pfeiffer for merging HCL into C resembles the 
collection-oriented programming style described in Section 9.1. The only paral­
lel data type is the pyramid, and the programmer has no other tool to organize 
data in the parallel environment. This limitation is due to the close relationship 
among HCL, the pyramid machine prototype PCLIP, and the new extension to 
C. The extended HCL is intended primarily for programming that machine, 
although the language could be used on other architectures as well (this is only 
feasible if the target machine efficiently embeds pyramid operations; see Chap­
ter 7). HCL operators are adapted to act on pyramids to suit the C language 
syntax. The C control structures are not given an explicit semantics in the 



www.manaraa.com

258 Chapter 9 

parallel domain, with the single exception of the ?: operator, used to translate 
HCL "restriction." 

9.1.4.1. Data Types 

In a program written in HCL C, variables declared with the usual C data 
types belong to the serial environment and cannot be used to describe data 
allocated on pyramids. To do so, Pfeiffer introduces two special-purpose new 
data types, the pyramid and the pattern. Both are "first-class, elementary data 
types much like integers and floating-point". 16 Also, a new type specifier bit 
is added to the standard ones, as long as a length specifier; they emphasize the 
bit-serial processing that is used for multibit variables in the parallel envi­
ronment. 

Three examples of pyramid declarations follow: 

pyramid gray-scale:8; 

pyramid struct { 
int pixel; 
float height;} pyr; 

bit pyramid mask; 

The first declares a parallel variable gray-scale of type pyramid having 
8 bits; the second declares a parallel variable pyr as a structure (composed of 
two standard variables) of storage class pyramid. Each element of pyr on all 
planes contains an element of pixel and an element of height. The third exam­
ple shows the use of the type specifier bit to create a Boolean parallel variable 
of pyramid type. 

The declaration of a variable in the storage class pyramid signals that it is 
a parallel variable and that it must be allocated on the whole target machine, 
that is, on all PEs of all planes. Thus, if HCL C is used on a 128 x 128 base 
pyramid machine, pyramid variables consist of a stack of eight meshes. 

A few predefined constants also have the type specifier pyramid. They are 
true, false, Level, x, and y. The first two are Boolean pyramids, the third as so-



www.manaraa.com

Programming a Hierarchical Structure 259 

ciates to every element in a plane the number of the level, and the latter two 
give the position of each element in the level it belongs to. 

The second major addition to the C language is the pattern data type. 
Variables declared as' patterns in HCL C have the same structure of patterns in 
HCL-that is, they consist of 14 elements-ordered according to the scheme 
of Figure 5.4. Being a type specifier, the key word pattern can be used as in 
the following program fragment: 

pattern NorthWest, West; 

NorthWest=DDDDlDDDD DDDD D; 
West=DDDDDlDDD DDDD D; 

The domain on which pattern variables are built is the set {a, 1, D}, where 
D indicates the "don't care" condition. A specific ordering is associated with 
the element of this set: 0< 1 < D. The purpose of this ordering is to define 
some operations on patterns, as will be described next. 

9.1.4.2. Operators 

In extending the semantics of the standard C operations to the new data 
types, the designer of HCL C has applied the principle of "orthogonality." 
This consists of the overloading of existing operations to accept as operands 
the new data types without introducing ad hoc operators. 

a. Expressions As an example, arithmetic operations involving pyramids 
are automatically interpreted to act on each component of the parallel variables 
on all layers, according to a strict SIMD processing modality and to the collec­
tion-oriented programming style described in Section 9.1. Length conversion is 
automatically handled with proper rules. The following program fragment helps 
explain the handling of such cases: 

pyramid gray_scale:8, inpuLpixel:6; 
bit pyramid mask; 

gray_scale = inpuLpixel + mask; 



www.manaraa.com

260 Chapter 9 

The parallel Boolean variable mask is extended to a length of 6 bits to 
match the length of the first operand in the addition. The extension consists of 
5 leading bits set to 0 (sign extension is used with all other types of pyramid 
variables). The sum is calculated and the 7-bit result is sign-extended to 8 bits, 
to be stored in the left-hand variable gray-scale. 

With reference to the other operations, analogous rules apply. In particu­
lar, comparisons between pyramid variables produce bit pyramid results. 

The overloading of standard operators for patterns has been investigated 
by Pfeiffer. 17 Having introduced an ordering in the elements of the domain {O, 
1, D} of patterns, Pfeiffer proposes to define the C language bitwise logical OR 
operator I between two patterns: the logical AND &; and the unary negation! 
with the usual rules for 0 and 1, and with D being the negative of itself. 
The definitions of the algebra of patterns allow coding arrangements of near­
neighbor combinations. 

The two basic operators of HCL, AND_MATCH and OR-Match, are 
supported in HCL C as unary operators acting on bit pyramid variables. Their 
syntax is highlighted in the following HCL C statements: 

bit pyramid maskl, mask2, mask3; 
pattern West; 

maskl = &(West) mask3; 

mask2=maskl & I(West) mask3; 

The two executable statements would be written, using HCL notation, as 

maskl = [AND_Match(West)] (mask3) 

mask2=maskl AND [OR-Match(West)] (mask3) 

Pfeiffer defines two patterns as "well formed" if no two elements are 
respectively 0 and 1. The admissible couples are therefore OD, ID, 11, and 
00. With this definition and according to the pattern algebra, and & (and I ) 



www.manaraa.com

Programming a Hierarchical Structure 261 

operator of patterns are distributive with respect to the & (and I) operator of 
bit pyramids. In the program fragment 

bit pyramid pyrl, pyr2; 
pattern locatl, locat2, locat3; 

locatl = 11111111 DDDD D; 
locat2=DDD11lDDD DDDD D; 
pyr2 = (&(locatl> pyr 1) & (&(locat2> pyr 1); 

locat3 = locatl & locat2; 
pyr3 = &(locat3> pyr 1; 

the two bit pyramid variables pyr2 and pyr3 are identical. 
Data movements are realized through elementary near-neighbor opera­

tions. From HCL we can easily verify that shifting of a bit pyramid variable 
by one position in any direction of the extended near-neighbor can be accom­
plished with a single AND_Match operation. As an instance, the following 
statement executes such a shift in direction north. 

, 
& (DDDlDDDDD DDDD m pyr 

A shorthand notation for this expression is N(pyr). There are 12 other such 
functions in HCL C. 

b. Control Structures As regards control structures, the C language ?: 
operator is the only one for which there exists an explicit interpretation in the 
parallel domain. With the terminology introduced in Section 9.1.2 while de­
scribing the abstract language 5£, this operator relates to the definition of the 
conditional execution where .•• do ••• end construct of Eq. (9.10). The ex­
pression 

cond ? exp 1 : exp2 

is interpreted with the usual meaning if cond is a serial variable, while it is 
interpreted in the parallel domain if it is a bit pyramid. In this case, expl is 
executed by processors where cond is true, exp2 where cond is false. We note 



www.manaraa.com

262 Chapter 9 

that such a statement is slightly more general than the where .•• do •.• end con­
struct of :t, since it specifies the action to be taken with processors that do not 
qualify for condo Yet, it is less than a parallel if-else selection, because expl 
and exp2 are constrained to be expressions and cannot be structured blocks. 
Also with reference to the restriction operator of HCL [see Eq. (9.15)], the 
modified ?: operator is more flexible, as just explained. 

The iterative constructs of the C language for, while, and do-while retain 
their semantics in the serial domain. Pfeiffer avoids extending explicitly their 
semantics to the parallel environment (as was proposed in the :t languages). 
Instead, he introduces a special function nrzO, which accepts a pyramid vari­
able as argument and returns a string of bits (a byte in an eight-level pyramid). 
Each bit is associated with one level of the pyramid variable, and it signals if 
the variable is set to zero on all elements of the corresponding level. The string 
of bits can be further manipulated with standard C language bitwise operators 
to produce a Boolean value; this can be the argument of a test in a serial 
construct, such as the terminating condition of for, while, and do-while. The 
following program fragment simulates the transitive closure expression of Eq. 
(9.19) that builds an OR pyramid from a Boolean image located on the bottom 
layer of a pyramid variable. 

mainO 
{ 

bit pyramid OrPyr, OldPyr, Image; 
pattern Children = DDDDDDDDD 1111 D; 

OrPyr=(Level = O)? Image:false; 
OldPyr = false; 
while (II nrz(OrPyr A OldPyr)) 

{OldPyr = OrPyr; 
OrPyr=(Level ~ O)? I (Children) OldPyr:OldPyr; 
}; 

The first executable statement loads the binary image in level 0 (the base) 
of the pyramid variable OrPyr; the other levels of OrPyr are reset to 0 (this is 
achieved with the parallel ?: construct and the constant pyramid Level). The 
second variable OldPyr is reset. The controlling condition of the while loop is 
an expression which first calculates the XOR (symbol A) between the two paral­
lel pyramid variables; then it reduces the outcome to a single word through the 
nrzO function; finally it applies the unary bitwise OR operator (symbol II) to 



www.manaraa.com

Programming a Hierarchical Structure 263 

verify if at least one element in the pyramid changed. If so, the body of the 
loop stores in OldPyr the temporary pyramid and then calculates through an 
OR-Match the updated version (the updating is restricted to the levels above 
the base). When the controlling condition is false, the OR pyramid of the input 
binary image is available in OrPyr (and in OldPyr). 

By comparing Eq. (9.19) with this small program, it is possible to appreci­
ate the concise notation of HCL with respect to more common languages. 

9.1.4.3. New Statements and Features 

The extension to the C language to support HCL so far introduced adheres 
quite well to the orthogonality principle. However, a number of new state­
ments, functions, and procedures have been proposed by Pfeiffer to make the 
pyramid programming environment friendlier. 

Beside the Drz( ) function, two more reduction operators are proposed: 
count( ) and sum( ). Both accept as their single argument a pyramid variable 
and return respectively the number of elements different from zero in the whole 
pyramid and the aggregate sum of all elements in the pyramid. By producing a 
scalar variable from a parallel one, they serve the purpose of linking the paral­
lel environment with the controller of the system, much like DrZ ( ). 

The handling of border problems with the bit pyramid matching operations 
is solved by the new statement boundary. It allows us to specify the value of 
the neighborhood of pyramid nodes on the edges of the pyramid (the children 
in the base, the lateral border nodes, and the parent at the apex). By default, 
the value is constant and false(zero). It can be set to true (one) or even to the 
value of the closest node (with the syntax boundary replicate). 

HCL C has also a few commands for image loading (unloading) into 
(from) pyramid variables and for pyramid display on output devices. The seed 
(pyr) statement allows one to create a bit pyramid pyr which has a single 
element set to 1 and the others set to 0 (the element is chosen interactively). 
This feature is useful for generating dynamically the starting pyramid for a 
coloring operation. 

Many other special function primitives can be found in Ref. 15; neverthe­
less we do not cover them here for brevity. 

9.1.5. PYR-E 

The language designed for the SPHINX system by Mehat5 belongs to the 
family of languages based on the C language. While a parallel implementation 
of Pascal 6 has been successfully used as a programming tool for the MPP 



www.manaraa.com

264 Chapter 9 

machine, the designers of PYR-E indicate two characteristics of the C language 
that make it more eligible for the targeted machine: a more advanced use of 
pointers and an augmented expressiveness in bit-oriented operations. 

The latter reason is further motivated by the general approach which drives 
the design of PYR-E: in the bipartition of parallel programming languages in­
troduced at the beginning of this chapter, PYR-E stays within the class of PE­
oriented languages rather than collection-oriented ones. A direct expression of 
the behavior of the PE, including its interaction with other PEs in the architec­
ture, is a key feature of the language. Parallelism is embedded in the language 
by attaching an explicit specification for each variable as belonging to one of 
the two domains, serial or parallel. Functions are implicitly overloaded by con­
version rules to act on the appropriate domain. 

9.1.5.1. Enabled Processor Set and the Programming Modes 

In the discussion of the language, a few definitions are assumed, which 
are now made explicit. The term enabled processors set (EPS) is used to refer 
to that subset of all processors in the machine that are currently enabled through 
a proper setting of the condition register and that therefore participate in the 
execution of the next broadcast instruction. This is precisely the definition of 
context as introduced in the discussion of the :£ language (see Section 9.1.2). 

Furthermore, the designers of the language introduce two modes of pro­
gramming that are available in the SIMD paradigm for which PYR-E is suit­
able, namely a local hierarchical programming mode and a global non-hierar­
chical one. The distinction is relevant to the description of how the flow of 
control is managed in the parallel environment. 

The local hierarchical mode ensues through the use of the condition regis­
ter of each PE and the corresponding definition of the current EPS: as a result 
of an operation based on local data, each PE establishes if it belongs to the 
next EPS, and the PEs of the current EPS are split into two disjoint sets. The 
controller of the machine uses this partition to broadcast (serially) two different 
instruction streams, and the execution of each such stream can give rise to 
further subdivisions of the various EPSs, thus realizing a hierarchical flow of 
executions: branches in the flow of the program are the outcome of a local test 
at each PE. 

On the contrary, the global non-hierarchical mode controls the flow of 
execution using the value of the global OR, which collects its value from the 
whole current EPS; it is the contents of the status registers of the EPS, which­
ever way it is obtained, that determines the branch in the program flow in the 



www.manaraa.com

Programming a Hierarchical Structure 265 

controller, and the resulting stream of instructions is carried out by the EPS, 
without the creation of any hierarchical subdivision among PEs. 

The control structures of the standard C language are reinterpreted in 
PYR-E to operate on the PEs according to one of the two modes just described. 

Another peCUliarity of PYR-E stems from the pyramid architecture of the 
SPHINX machine for which it has been conceived. Since the language aims at 
making explicit the interaction among PEs, it requires proper constructs for 
data exchanges both within a layer of the pyramid and between adjacent layers. 
While the former type of communication is rather standard, the second one has 
to cope with the possible Multi-SIMD operative modality of the underling ma­
chine, and makes explicit the synchronization mechanism adopted. In the ter­
minology of Mehat, transmission of control is the strategy on top of which the 
language builds its constructs to express interlayer data exchanges. This latter 
topic will be described in Section 9.2. 

9.1.5.2. Data Types 

The concept of domain is used to establish whether the declaration of a 
variable affects the controller or the parallel structure. In the former case, the 
domain is serial, and variables of this kind only exist within the controller; in 
the latter, the domain is parallel, and an instance of each variable of this kind 
exists in every PE. The domain is specified with the key words serial or paral­
lel in the declaration of each variable: 

serial type-specifier variable 
parallel type-specifier variable 

The domain is further extended to pointer variables as well. Three cases 
are relevant: 

serial type-specifier serial * pointer-variable 
parallel type-specifier serial * pointer-variable 
parallel type-specifier parallel * pointer-variable 

The first involves only controller variables and deserves no discussion. 
The second case declares a controller variable used as a pointer in the memory 
of all PEs; this corresponds to a strict SIMD global addressing modality, since 
it is the controller, through the variable declared as a pointer, that establishes 
the memory address to be used by all PEs. The third case only involves vari-



www.manaraa.com

266 Chapter 9 

abIes in the parallel environment: a local variable in the PEs is used to locally 
address the memory, thus realizing a form of autonomous memory addressing 
which is only possible because of the specialized hardware of the SPHINX PE. 

The types available in the parallel domain are all the basic and derived 
types of the standard C language, with the associated storage class and type 
specifiers. The only deviation is the possibility of adding a length specification, 
which sets the number of bits of the associated variable. This feature, available 
in the C language only for members of structures and unions (the bit-fields), 
makes explicit the bit-serial nature of the processing modality supported by 
PYR-E. The length is specified also for constants and pseudoconstants; these 
are parameters which change with the level of the pyramid, but are otherwise 
constant in the associated PEs, as in the following case: 

int pixel: 8 + FLOOR 

Syntactically, this declaration involves an expression, and the parameter 
FLOOR is instantiated only at run time by the controller. 

9.1.5.3. Operators 

The whole set of operators, control structures, and functions or procedures 
of the standard C language is available in PYR-E. Their semantics is condi­
tioned by the domain of the associated variables; in the serial environment, 
nothing differs from the usual interpretation, while in the parallel one a new 
meaning is attached to each construct, as we briefly show. 

a. Effect of the Domain on the Semantics of Operations. The construction 
of expressions is the first example. Whenever a variable, declared as parallel, 
is used in forming an expression, the whole expression is implicitly converted 
to the parallel domain. Serial variables are transformed into parallel ones by 
proper actions from the controller, which broadcasts to all PEs the pertinent 
value. Assignments are handled accordingly: a serial variable can only be the 
recipient of a serial expression, while a parallel variable forces the right-hand 
side of the assignment to be converted to the parallel domain so that each PE 
can store the appropriate result. As a consequence, the assignment of a parallel 
variable or expression to a serial variable is illegal; the domain conversion 
from parallel to serial is possible only in a very special case, covered later. 

A special treatment, deriving from the parallel context in which they are 
declared, is that of variables for which a length specification has been given. 
The usual conversion routines of the standard C language would make poor use 



www.manaraa.com

Programming a Hierarchical Structure 267 

of memory space. The general rule adopted instead is to keep the size of the 
result of an expression to the minimum necessary to correctly represent it. 

b. EPS and the Local Hierarchical Programming Mode Among the con­
trol structures of C the Boolean test if-then-else gives rise to the local hierarchi­
cal programming mode, where the flow of control is partitioned according to 
the outcome of an expression evaluated in each PE. The effects of the parallel 
domain on the if-then-else control structure are straightforward. The syntax is 
the usual one: 

if (test _ expression) 
{block_true} 

else 
{block_false} 

and the structure receives the new interpretation if and only if tesL-expres­
sion belongs to the parallel domain. In this case, the semantics is the follow­
ing: enabled PEs, where the expression of the test evaluates to true execute the 
first block of instructions; the others execute the second one. In other words, 
all PEs in the current EPS evaluate tesL-expression, which produces as a 
result a single-bit tmp, and save in memory the content C of the masking regis­
ter M; then M is loaded with tmp, thus changing EPS, and the PEs belonging 
to the new EPS execute block_true; M is now loaded unconditionally with 
the logical AND between C and not(tmp), which resets EPS to the complement 
of the set just active; PEs in this EPS execute block_false; lastly, M is re­
stored unconditionally to its initial value c. 

The only difference between the where •.• do ..• end construct of ;t, de­
scribed in Section 9.1.2, and the if-else statement of PYR-E is in the else 
clause of the latter, which is missing in ;t. The semantics, though generated 
differently, is the same. 

The multi selection operator switch-case has semantics quite different in 
the parallel domain with respect to the serial case. It retains the usual syntax: 

switch(val) 
{ 
case Vall: {blockl} 

default : {blockJ 
} 



www.manaraa.com

268 Chapter 9 

where val is an integer expression belonging to the parallel domain and Vall' ... ' 
valn are integer constants. The interpretation of the construct is as follows: the 
initial EPS is saved in memory and emptied; the resulting (initially empty) EPS 
is augmented by the sets of processors in which val=val1 and which execute 
the instructions of block1; when the label default is reached, the new EPS is 
the complement of the current EPS and executes blockd• Finally, the initial EPS 
is restored from memory. 

The notable difference with serial semantics is the ordering introduced by 
the enumeration of the labels and by the handling of default. This clause is 
executed where none of the preceding comparisons hold, while in the serial 
case it is activated when none of the comparisons hold anyway. As a conse­
quence, normally the break statement, used in the serial construct to close the 
otherwise sequential execution of the alternatives, is missing unless explicitly 
required by the logic of the instructions. 

No definition of the multi select construct is available in ;;e. A straightfor­
ward handling of the context stack according to the actions of the EPS of PYR­
E is one of the possible definitions (we note that there seem to be more seman­
tics for such a construct). 

c. EPS and the Global Nonhierarchical Programming Mode. The block 
control structures do, while, and for, if executed in the parallel environment, 
rely on the second programming style, the globally controlled one. Implicitly, 
a conversion from the parallel to the serial domain is involved in this program­
ming mode, since the next instruction broadcast by the controller depends on 
the status of the PEs. PYR-E uses three new operators to execute this domain 
conversion: any( expr), all( expr), and none( expr), where expr is an expres­
sion in the parallel domain, and the result of the operators is a value in the 
serial domain, that is, in the controller. The semantics of any is obviously that 
the value returned to the controller is true if expr evaluates to true in at least 
one PE of EPS; all, in tum, returns true if expr is true in all PEs of EPS; none 
is the dual case of all, and returns true if expr is false in all PEs of EPS. 

With these operators, the while control structure 

while( expr) 
{blOCk} 

where expr is defined in the parallel domain, is interpreted as 

while( any( expr)) 
if (expr) {blOCk} 



www.manaraa.com

Programming a Hierarchical Structure 269 

that is, the instructions included in block are excuted by the PEs of EPS for 
which expr is true as long as this set is not empty. Procedurally, PEs in EPS 
save M unconditionally in c; then they evaluate expr which yields a bit t; M is 
loaded with t, and the new EPS executes block if it contains at least a PE; then 
the flow goes back to the previous stage, otherwise the structure is exited and 
EPS is restored to the initial EPS by reloading unconditionally M with c. Analo­
gous transformations and interpretations hold for the other two block control 
structures. 

These operators highlight the different flavor of the PYR-E language with 
respect to 5£. Instead of using an implicit predicate to express the global-OR 
function required by the controller, PYR-E uses an explicit means for switching 
between the two environments. This follows the basic principle that sustains 
PE-oriented languages, namely to make explicit the role of the PEs and that of 
the controller. 

The C language statements break, return, continue, and goto, which 
modify the flow of execution by causing an exit from the control structures, 
have to be reinterpreted as well. The effects of break, return, and continue 
are explained in terms of the EPS of the control structure from which the flow 
exits, as follows: 

while(cond) 
{ 
if(test l ) 

else 

} 

{if( test:a) 
break; 

else 

where cond, testl , and test2 belong to the parallel domain. Each evaluation of 
cond generates a set of processors that participate in the execution of the while 
block; let this set by EPS,. The evlauation of testl partitions EPS, into EPS ll 

and EPS 12; processors in EPS 12 execute block2, processors in EPS I1 evaluate 
test2, which further partitions EPS I1 into EPS I1 , and EPS 112. Processors in 
EPS I11 execute the break statement; the effect is that they are removed from 
EPS I1 " EPS I1 , and EPS, as well, thus realizing an exit from the control struc-



www.manaraa.com

270 

J\ i\ EPS" 

EPS. 1'2 EPS.L I 

Chapter 9 

Figure 9.1. Graphical sketch of hierarchical ar­
rangement of the EPSs generated by the two­
nested if-else constructs. The execution of the 
break instruction within EPSIII removes this set 
of PEs from the whole hierarchy. 

ture. In Figure 9.1 a graphical representation of the involved hierarchy of EPS 
is given. 

Similar to this is the behavior of return, which obviously acts on the 
instruction sequence within functions. As to continue, its effect is the elimina­
tion of the PEs that execute it from the EPSs nested within the control structure 
(so these PEs skip the sequence of instructions in the rest of the block) and the 
generation of a new EPS, which will be fused with the remaining PEs that 
undergo the evaluation of the terminating condition of the block. In this exam­
ple if the statement break were replaced by continue, processors in EPS IlI 

would be removed from EPS II but not from EPS, and would participate in the 
successive evaluation of condo 

The semantics of the break statement here described closely resembles the 
escape statement of 5£. In the case of nested EPS, however, the syntax of 
escapej in 5£e is much richer and more explicit. 

The only statement for which no interpretation is proposed in the parallel 
domain is goto. The label referenced with a goto can be associated with a 
statement contained within a block either parallel or serial; while in the latter 
case no problem arises, in the former difficulties arise in the resulting EPS. In 
PYR-E the behavior of the program is not specified in such a case. 

9.1.5.4. New Statements and Features 

As in the other languages considered, PYR-E introduces a number of spe­
cial functions; even if they technically do not belong to the formal specification 
of the extended C language, they are a crucial part of the new language. These 
special functions are used for communication among neighbors and for the 
management of interlevel activity, such as task creation and "control trans­
mission. " 

PYR-E distinguishes interlevel and intralevel communications. The former 
involve the interaction of tasks running on different planes of the pyramid un­
der different controllers and therefore requires a form of synchronization; the 
latter rely on the routing capabilities of PEs and are easily embedded in the 
language with the aid of the following special functions: 



www.manaraa.com

Programming a Hierarchical Structure 

North (par_expr, disp) 
East (par_expr, disp) 
South (par_expr, disp) 
West (par_expr, disp) 

271 

The use of these functions obeys two simple rules: transmission is unidirec­
tional, and it is a read operation executed by the destination PE. The two 
arguments of the functions have the following meaning: par_expr is an ex­
pression in the parallel domain, which specifies the destination variable where 
the datum will be stored; disp is the displacement in the specified direction 
where the source PE is located. 

Unlike par_expr, disp can belong either to the serial or to the parallel 
domain. No special interpretation is required if it is a value from the serial 
domain, that is, from a controller variable. The statements 

serial. int step; 
parallel int pixel:8; 

step=2; 
pixel = East(pixel,step); 

are the simple code to specify a westward shift by two positions for the variable 
pixel in the whole pertinent plane. However, if the displacement is itself a 
variable in the parallel domain, the intended behavior changes, as in the code 

parallel int pixel:8, step; 

pixel = East(pixel,step); 

In this case, each PE reads the variable pixel from a source PE located to 
its east at a displacement which varies with the destination PE, since the vari­
able step is allocated in the whole plane. It can be easily verified that the 
execution of these statements causes the controller to enter the "global test" 
modality. Indeed, the following instructions are issued: each PE copies step 
into a local variable count; variable pixel is loaded, bit per bit, in the shift 



www.manaraa.com

272 Chapter 9 

register devoted to near-neighbor communication; it is then moved in the appro­
priate direction by one position; all PEs decrement variable count by 1; PEs 
where count gets to zero read in the shift register contents and store the value 
in memory at the address of variable pixel; then the controller issues the in­
struction any( count) and establishes whether any destination PE still has to 
receive their intended value; the preceding steps are iterated until any returns 
false. The use of the domain conversion statement any signals the global test 
modality, which turns this data movement into a dynamic, data-dependent op­
eration. 

Although the four communication functions imply unidirectional transmis­
sion, the parallel domain associated with the displacement does not prevent 
using signed variables. This actually modifies the behavior of the invoked func­
tion, and the controller has to iterate twice the procedure just outlined to cover 
the two possible directions of movement. 

The interpretation of the data movement functions in terms of "read 
from" operations allows one to specify easily the effect of the status of PEs 
involved in the data transfer. Only PEs in EPS read in the transmitted value; 
the remaining PEs do not store the value contained in the shift register, but 
they do transmit the content of the variable involved in the movement. It is the 
responsibility of the programmer to handle the anomalies arising on the frontier 
of EPS as a consequence of this protocol. PEs outside EPS do not execute the 
instructions resulting in variable assignments, and therefore they can end up 
transmitting garbage data when a data movement instruction is issued from the 
controller. A direct consequence of this effect is the different result produced 
by the program segments 

parallel int pixel:8; 
serial int disp!> diSP2; 

pixel = West(pixel, diSPl + disP2); 

parallel int pixel:8; 
serial int diSPl,disP2; 

pixel = West(pixel,disPl); 
pixel = West(pixel,disP2); 



www.manaraa.com

Programming a Hierarchical Structure 273 

In the second program fragment, the first assignment might correspond to PEs 
outside EPS; the value thus transmitted by such PEs at the next instruction is 
not reliable, since it is obtained by a memory location which has not been 
properly loaded. 

Programming More Planes. The description of the language thus given 
gives no hint of the pyramid machine structure (the designers of PYR-E explic­
itly stress this point as the basis for the portability of PYR-E on other SIMD 
machines, such as the Connection Machine). In fact, algorithms that use the 
pyramid structure require two more types of extension to the standard C lan­
guage, namely a declaration of the allocation of variables on the planes of the 
pyramid and the protocol for data transmission between adjacent layers. 

As to variable allocation, PYR-E distinguishes static and dynamic vari­
ables. The first is implicitly allocated in the memory of the PEs of all planes 
unless an explicit plane delimiter is used to limit the set of planes where the 
variables are created to either the base or the apex of the pyramid, as in the 
following example: 

{TOP} parallel long int sum; 

{BASE} parallel int value: 16; 

which statically allocates on the bottom array the parallel variable val ue , 
with a length of 16 bits, and the long integer variable sum in the topmost layer 
of the structure. Dynamic variables only exist within the layer where they have 
been allocated within the body of a function executing only on that layer, or 
explicitly as the result of a PEalloc memory management function. 

The handling of data exchanges between planes is covered in detail in 
Section 9.2 in the description of the control environment hosting a program for 
the SPHINX bin pyramid. 

9.1.6. pel 

The Pyramidal C Language (PCL) is another proposal for programming 
fine-grained pyramid machines with a rather high-level language based on C. It 
was initially presented 18, 19 as one of the tools to be developed for the software 
environment of the PAPIA 1 system. The programming environment of that 
prototype machine consists of a layer of languages, from the basic machine 
code used to develop the system libraries to the macroassembly language that 
embeds PAPIA 1 machine code into a set of mnemonics (a brief description of 
this environment is available in Section 5.2.4.lc. Later extensions 20 to PCL 
have led to an intended wider scope for the language. The following brief 



www.manaraa.com

274 Chapter 9 

description concentrates only on those parts of the language that are pertinent 
to pyramid machine programming. 

With reference to the programming styles introduced in Section 9.1.1, 
PCL belongs to the collection-oriented languages. In close similarity to HCL C 
(see Section 9.1.4), it explicitly introduces parallel data types, among which 
are the notions of "image," "pyramid," and "context." The last one is an 
attempt to enrich the notion of context as given by Levaire and Bouge to the 
hierarchical domain. 

The control structures of C are partially overloaded and given a parallel 
meaning and partially augmented with explicit new parallel constructs. 

9.1.6.1. Data Types 

PCL has an explicit syntax for declaring both standard and parallel data 
types. We adopt the notation of Levialdi,21 who gives a Backus-Naur defini­
tion of the declaration section of a PCL program. 

(declaration) 
(decLspecifier) 

(declarator) 
(type-Bpec) 
(simple_type) 

(sc_specifier) 
(paralleLtype) 

(base) 
(sizex) 
(sizey) 
(height) 
(length) 

:: = {(contexLident)} (decl-Bpecifier) 
:: = (type-Bpec)(declarator) I 

(sc _ specifier)(declarator) 
:: = (ident) {( const)} 
:: = (simple_type) I (parallel_type) 
:: = character 1 integer 1 short 

integer I floating 1 boolean 1 mask 
:: = auto 1 extern 1 register 
:: = context (ident); 1 

ima of (simple_type)(ident)[ (sizex),(sizey) ];1 
pyra of (simple_type)(ident)[ (base),(height) ];1 
select (ident)[length]; 

:: = (inLexpression) 
:: = (inLexpression) 
:: = (inLexpression) 
:: = (inLexpression) 
:: = (inLexpression) 

The basic assumption of the typing mechanism of peL is that the parallel 
type is a derived type and is based on simple types. These are the standard 
types of the C language, with two notable additions, namely boolean and 



www.manaraa.com

Programming a Hierarchical Structure 275 

mask. The former is used for parallel variables represented by a single bit; the 
latter has the special function to create subsets from other parallel variables and 
to contribute to the definition of context type. 

The context type is a way to create a partition in a quad-pyramid data 
structure. Context variables consist of an ordered set of four integer values (x, 
y, 1, d); they represent concisely a (trunk of a) quad pyramid. The first two 
integers are the x,y coordinates of the apex; the third coordinate is the topmost 
level, and the fourth is the depth. For example, in a pyramid of eight levels 
(level 0 is the base), the following expressions define two disjoint contexts: 

context Top, Trunk; 

Top = (0,0,7,3); 
Trunk = (*,*,4,5); 

The Top context is the three-level subpyramid sharing the apex with the 
underlining eight-level pyramid; Trunk instead extends from level 4 downward 
to the base (the notation, *,* in context variables stands for all pyramid nodes 
of the corresponding levels). Context variables are declared within the main 
program. A default "universal context" is implicitly declared externally: it 
consists of a pyramid as large as the running environment supports. 

The primary purpose of the context type is to act as the support for the 
two other parallel data types, ima and pyra. Parallel variables of both types 
can only be declared within a context. With respect to this, the context of PCL 
is the hierarchical counterpart of the "shape" concept in Thinking Machine 
C*. The ima data type declares mesh variables of the given sizes. The pyra 
type declares trunk-pyramid variables: the trunk pyramid has a linear dimension 
2(base) in the base and 2(base)-(height)+ 1 in the top. The following are some exam-
ples of parallel-variable declarations: 

context Top, Trunk; 

ima of character Pixels[ 256,256]; 
pyra of real A( 8,5 ]; 
Trunk pyra of int B[ 8,3]; 



www.manaraa.com

276 Chapter 9 

Variable Pixels is a mesh instantiated in the plane of the pyramid (the 
dimensions refer to the base). Variable A is of type pyra but has no context 
specifier and is therefore instantiated in the universal context; however, it only 
consists of five levels and therefore is actually a trunk pyramid. Variable B is 
defined within the Trunk context but is itself a subset of that trunk pyramid. 

A third new parallel data type is select. It is used to create variables con­
sisting of a string of bits, each bit representing a single position in the cellular 
logic neighborhood of a pyramid node. 

According to the proposal of the PCL designer, the context concept serves 
a second purpose, beyond typing variables. It is a way to specify task partitions 
in a pyramid system. A task, before running in the system, must be associated 
with a context, which specifies its data environment (variables, etc.). De­
pending on the management of concurrence (SIMD, multi-SIMD, or MIMD), 
contexts can be manipulated through the associated context variables to sched­
ule processes (" context algebra"). 

9.1.6.2. Operators 

PCL adopts different strategies in extending the semantics of C constructs 
to the hierarchical parallel domain. 

Implicit overloading is used in the assignment statement. A special form 
of assignment is the "selection statement" with the following syntax: 

(ident) (mask_expression») = (par_expression) 

The assignment to the left-hand-side parallel variable (ident) is conditional on 
the value of (mask_expression). This is built with variables of type mask and 
restricts the assignment to elements of (ident) where (mask_expression) is 
true. We note that the "selection statement" modifies the set of active proces­
sors only for the execution of the assignment. With regard to the formal lan­
guage 5£ introduced in Section 9.1.2, it can be defined as a conditional execu­
tion of a single instruction rather than of a block of instructions. 

PCL introduces three explicit parallel control structures. The first is a 
where-otherwise structure that easily generalizes the where ••. do •.. end of 5£ 
and matches the if-else of PYR-E (see Section 9.1.5.3). The other two are 
pwhile and pdo-puntil. They extend in the parallel domain the corresponding 
standard C language construct. Both require that the controlling condition be a 
parallel expression of type boolean. 



www.manaraa.com

Programming a Hierarchical Structure 277 

9.1.6.3. New Statements and Features 

A number of special-purpose built-in functions are available in PCL for 
managing image 110, for computing image statistics on the pyramid variables, 
etc. Among the more unusual ones are the special instructions required to acti­
vate and deactivate contexts: open context (ident) and close context (ident). 
They delimit the section of main in which the parallel variables are allocated 
and in which the associated task is scheduled. 

Data exchanges within neighboring nodes are implemented with a set of 
"broadcasting" functions. A multistep shift (it accepts a parallel variable of 
type ima or pyra, a scalar displacement, and a direction) moves data horizon­
tally; sendup, sendown, and transf realize vertical communications with either 
pyra or ima variables. 

Furthermore, explicit functions implement near-neighbor operations to 
support pyramid machine instructions such as those of PAPIA 1 (see Section 
5.2.4.1). Such functions take as operands a Boolean parallel variable and a 
select variable; the second one specifies which data contribute to the computa­
tion among those of the near-neighboring pyramid nodes. PCL also has an 
explicit support for mathematical morphology. 

9.2. CONTROL ENVIRONMENT 

Profitable use of a hierarchical system such as those described in this book 
does not depend only on the programming language available. In analyzing 
the various architectures, we have distinguished the proposals according to the 
granularity and homogeneity of the processing units. A great variety exists 
among them, and such differences appear not only in the hardware at processor 
level and their interconnection but also in the control of such different systems. 

It is quite evident that control cannot adhere to a single model across all 
architectures. The SIMD compact pyramid requires a relatively simple control 
with respect to a cluster of heterogeneous small pyramids. Yet, a compact 
pyramid can be substantially more difficult to handle if we want to run different 
tasks according to the resolution, thus introducing a multi-SIMD modality. All 
this has consequences on the structure of the controller(s) and on the program­
ming environment. In this section, we characterize the control environment 
with special regard to the multi-SIMD modality. We review the most important 
proposals that have been put forward to design the controllers, and we ana­
lyze the influence of the various controlling strategies on the programming 
environment. 



www.manaraa.com

278 Chapter 9 

9.2.1. Control of Multi-SIMD Hierarchical Systems 

Hierarchical multiprocessor systems can be built to embed different forms 
of parallalelism. Fine-grained, massively parallel pyramids are best suited to 
"data parallelism," with a single task having control of all the computational 
resources. The multilevel structure of the pyramid allows introduction, at least 
in principle, a form of "task parallelism," with tasks distributed on the levels 
of the pyramid and interacting through the vertical communication paths. Fur­
thermore, we can also consider heterogeneous systems, where the levels of the 
hierarchy are realized with processors of different granularity: usually higher 
levels (the symbolic layer) are managed by advanced microprocessors, and 
lower ones (the iconic layer) by nets of bit-serial processing elements. Some­
times, the system is also partitionable in the clusters (subpyramids), each com­
prising a subset of the network of bit-serial processing elements, and one mas­
ter processor, in charge of higher-level routines. 

We can gather such different systems under a unifying class by using the 
notion of multi-SIMD processing modality. It is possible to identify in the 
systems groups of slave processors which are only capable of carrying out, in 
strict SIMD mode, the instructions broadcast to them from a master processor. 
This master processor can be just a controller (whose only task is the dis­
patching to the slaves of the instruction and management of the interaction with 
other partners) or a working processor (in this case, it also participates with a 
computation task for the overall processing). 

Conceptually, such a system is capable of running multiple tasks on differ­
ent data and thus closely matches the definition of MIMD processing modality. 
We think, however, that the multi-SIMD characterization is more precise, be­
cause it retains an explicit hint of the existence of a (possibly) large set of bit­
serial processing elements. This has a definite impact on the controlling 
strategy. 

Indeed, the multi-SIMD environment can be implemented along two dif­
ferent dimensions in hierarchical systems: across the resolution and across 
space. The first case refers to the use of the pyramid as a set of meshes of 
linear dimension decreasing with the levels (and with the resolution, accord­
ingly). Each plane is a SIMD mesh managed by a plane controller and acts as 
a single "node" in a network of linearly connected processors. In the second 
case, the pyramid is partitioned into clusters, each cluster covering, eventually 
at more resolutions, a region of the whole image (input data, in space). Such 
clusters are interconnected in bidimensional networks and can themselves be 
considered the basis for further groupings at higher levels. 



www.manaraa.com

Programming a Hierarchical Structure 279 

The type of control required for these two forms of multi-SIMD pro­
cessing tends to be somewhat different. 

The linear (across the resolution) environment lends itself to the manage­
ment of tightly coordinated processes that interact through massive data ex­
changes along the hierarchical connections. In the simplest case, each level has 
a single task, and therefore the overhead in synchronizing adjacent tasks on the 
plane controllers is low. However, synchronization of data exchanges between 
the SIMD layers has more stringent requirements, because it has to deal with 
bit-serial processing and must possibly deal with the rather sustained timing of 
the SIMD array. As we will see in detail in the following section, a specially 
critical situation ensues when the pyramid hosts mixed data movements (up­
ward movements for data reduction functions and downward movements for 
distribution of results). More complex activities are possible, though less 
common. 

The bidimension arrangements of clusters of subpyramids require a richer 
control strategy. The cluster has to synchronize the activities of the slave SIMD 
processing elements with the master processor: the amount of data is usually 
reduced, compared with the previous case. However, synchronization at the 
bit-serial level is required when two clusters have to exchange data to the iconic 
level (at the boundaries of the SIMD meshes). Moreover, clusters interact at 
the symbolic level as well, when master processors exchange aggregate partial 
results; communication has a much coarser granularity and less stringent timing 
requirements, but it demands a richer set of primitives. 

From the viewpoint of control management, a very important issue is the 
required effort of the programmer. In coding the algorithms, the visibility of 
the synchronization mechanism is usually a problem, because it makes program 
code less readable and less portable. The second form of multi-SIMD pro­
cessing mode just described is the most akin to a general MIMD paradigm. 
The across-resolution multi-SIMD mode allows a more compact coding of the 
tasks interaction, because the tasks to be coordinated are limited in number and 
because they are arranged topologically along a linear network of processors. 

9.2.2. Multi-SIMD Control across Resolution 

The following discussion is based on the experience gained by the design­
ers of fine-grained compact-pyramid systems, such as those described in Chap­
ter 5. We note that the SIMD modality, being the easiest from the conceptual 
and practical points of view, is the one actually implemented in three of the 
four pyramid systems that became operational, at least at the prototype level. 



www.manaraa.com

280 Chapter 9 

The SPHINX bin pyramid distinguishes itself from the outset as a system 
designed to be multi-SIMD. In the process of consecutive refinements of an 
initial specification, various versions of a controller have been investi­
gated. 22- 25 We describe them because they highlight the requirements intro­
duced in the controlling environment by different classes of algorithms. 

9.2.2.1. Unidirectional Communication 

Let us consider initially a very simple algorithm, namely the computation 
of the histogram of all pixels in an image stored in the base of a pyramid. The 
algorithm is an instance of unidirectional flow of data, since the pyramid is 
used to perform a reduction. It counts, in logarithmic time, the number of 
pixels of the input image stored in the base, having a value equal to the one 
broadcast by a controller. The count is accumulated in the apex. In the follow­
ing, we give a pseudocode (adapted from Clermont and Merigot 22 and Mehat 
and Merigot 23) of a possible implementation on a bin pyramid with height 
levels. The base is level 0 and stores the input image pix_value, while the 
apex is level height-I. 

{ba.se only} 

{ba.se only} 

for i = a to max _pix_value 
begin 

enable PEs where pix_value = i 
count PEs enabled 

end 

{count} 

begin 
transmit bit to the parent 

end 
{on plane L: 1 :SL<height-l} 

begin 

end 

for j= 1 to L 
begin 

sum bits from left and right children 
transmit result to parent 

end 
transmit carry to parent 



www.manaraa.com

Programming a Hierarchical Structure 

{a.pex only} 
begin. 

for j = 1 to height 
begin. 

sum bits from left and right children 
store result bit in memory 

end 
store carry in memory 

end 

281 

Apparently, the computation is rather uniform across the pyramid, since 
the role of all PEs is to gather the intermediate count computed by the children, 
sum it up, and transmit it to the parent. The exception is in the base, where 
processors do not perform an appreciable computation, and in the apex, where 
the computed value will be stored somewhere in the local memory. Even at 
such a coarse level of analysis, it is clear that the control modality cannot be 
SIMD. This is even more so if we break down the algorithm into its bit-serial 
processing and if we take account of the vertical transmission modality in the 
bin pyramid. 

The processing element of the SPHINX (see Chapter 5 for details) exe­
cutes a vertical transmission with a single read-modify-store machine cycle. 
The highest utilization of the pyramid machine is therefore obtained by pipelin­
ing the ascending bit-serial stream of data so as to keep the layers of the pyra­
mid busy as soon as the information is available. If the vertical transmission 
obeys a producer-consumer protocol at the bit level, the occupancy diagram of 
the pyramid (see Figure 9.2) for the histogramming algorithm shows a remark­
able diversity of instructions to be broadcast to the layers at each new machine 
cycle. So, an apparently simple algorithm turns out to be a demanding task on 
the controller. 

For this reason, the controlling environment for the SPHINX machine has 
been designed initially as a three-level subsystem.22 At the apex of the hierar­
chy is the host computer. The next level is a linear arrangement of plane con­
trollers; each one is attached to a macro generator, which transmits the 
SPHINX op-codes through a FIFO queue to the low-level controllers (see Fig­
ure 5.15). These drive the meshes of PEs and are in tum interconnected linearly 
to perform vertical transmission synchronization. While the interaction between 
tasks on the plane controllers is managed through message passing, the low­
level synchronization must cope with the speed of the vertical transmission 
channels. 

Clermont and Merigot22 have proposed an elegant and speedy implementa-



www.manaraa.com

282 

level 

4 
3 
2 
1 I--r",+="" o 

level 

level 

B bits compare 

a) 

time (machine cycles) 

b) 

time (machine cycles) 

c) 

time (machine cycles) 

T bits compare and trnnsmlt 
A add and transmit 

C transmit carry 
S add and store 
M store 

Chapter 9 

Figure 9.2. The occupancy diagrams of the 
bin-pyramid levels as generated by the histo­
gramming algorithm (input pixels are 2 bits 
deep). (a) execution of a single comparison and 
upward count; (b) two such steps are pipelined 
for optimal occupancy of the top level only; (c) 
the best possible execution under the pro­
ducer-consumer protocol at bit level. 

tion of the low-level controllers as automata. The required hardware is mini­
mal, and the scheme always guarantees the correct synchronization of data 
exchanges. Basically, each plane automaton manages the state of the buffers 
associated with the vertical transmission channels, analyzes the instruction to 
be extracted from the queue and determines locally if the instruction is compati­
ble with the producer-consumer protocol at the current time. To reach a deci­
sion, each automaton requires some information from its two neighboring au­
tomata above and below. The state transition function that computes if the 
instruction can be executed is very simple and can be easily implemented. 

The speed of the low-level controller is, however, limited by those pyra­
mid operations that perform a global shift of data in either vertical direction. A 
simple example is the execution of a read-combine-transrnit operation on all 
planes. According to the producer-consumer protocol, this instruction can be 
executed if the local input buffers are filled with data. But locally, each autom­
aton, except the one at the apex, sees a full output buffer, and the activation 



www.manaraa.com

Programming a Hierarchical Structure 283 

of the operations requires a top-down propagation of consensus. So, while at 
any time the set of automata that can schedule the instruction is a legal subset 
of the final one, the time required for the consensus to reach the base might 
exceed the read-modify-store machine cycle time, thus slowing down the 
machine. 

This linear arrangement of automata can be used to synchronize any linear 
arrangements of asynchronous processing elements (asynchronous systolic 
arrays, etc.) by embedding properly the synchronization mechanism in the state 
transition function. With regard to the embedding of such a control scheme in 
a real system, we note that the programming environment would not be af­
fected by the synchronization of data transmission, which is handled com­
pletely transparently. 

9.2.2.2. Crossing-Data Movements and the Transmission of Control 

The controlling subsystem based on the synchronizing low-level automata, 
though simple and efficient, cannot handle concurrent upward and downward 
flows of data. Mehat and Merigot23 illustrate the point with a modified histo­
gramming algorithm: the count for each histogram bin has to be redistributed 
to the base and stored in every PE initially containing the value of the bin 
(associative histogram). This algorithm gives rise to two independent streams 
of data: the upward one, identical to the previous histogramming algorithm, 
and a downward one, which simply consists of copying at each level below the 
apex the parent's value. PEs in the base compare such a value with their pixel 
value and conditionally store it in memory if the two match. 

Such crossing-data movements can give rise to deadlocks if the pro­
ducer-consumer protocol is enforced with a single task on each layer. In the 
aforementioned case, a deadlock occurs between the apex layer and the one 
close to it as soon as the former has produced the first bit of a count and has 
redirected it downward. The circular link between the two tasks arises because 
the task on the apex is waiting for the lower one to consume the first bit of the 
count; the task on the lower level is waiting for the apex one to consume the 
data required for the second bit of the count. 

The problem has been addressed by Mehat23 introducing a new structure 
for the control subsystem and a new protocol to schedule data. The proposal 
considers the vertical channels as a nonsharable resource. Each plane has two 
such resources, an ascending channel and a descending one. Moreover, Mehat 
defines "process" as the set of instructions of a task that manage vertical data 
transmissions. According to these definitions, processes can belong to one of 
the following classes: ASCending, DEScending, MIXed, and NEUtral. The 



www.manaraa.com

284 Chapter 9 

first two classes cover unidirectional data exchanges, whereas the third includes 
processes that interact in both ways with neighboring levels of the pyramid. 
NEUtral processes do not execute vertical data transmissions. 

The new protocol for scheduling processes in the plane controller allows 
in each layer an unlimited number of NEUtral processes, together with a single 
MIXed process or one ASCending and one DEScending process. So, each ver­
tical resource in a plane is owned by at most one process. 

The low-level synchronization is carried out by low-level controllers. The 
difference with the previous scheme is that such controllers are not linked to 
realize synchronization. Instead, they are designed to read instructions from 
two separate queues, one for ascending and one for descending data streams. 
MIXed processes use both queues. The protocol is such that a low-level con­
troller dispatches instructions by reading from one queue as long as the in­
terlevel resources are available. When this condition no longer holds, the con­
troller executes a context switch and activates the single process in the level 
that uses the other vertical direction, by reading from the other queue. 

The protocol guarantees a deadlock-free scheduling of processes, provided 
that the pyramid hosts at most a single MIXed process. The modified histogram 
algorithm would generate one such process in the apex. Deadlock can occur, 
however, if two or more MIXed processes are allowed to execute concurrently. 

This proposal is completed with the specification of process generation. 
Mehat introduces the notion of "transmission of control," which is a way to 
specify explicitly, though concisely, cooperation of processes in the program­
ming environment. According to this proposal, processes are created where the 
streams of data originate and "migrate" through the plane controllers along 
with the data. As an instance, an upward data movement involves the creation 
of an ASCending process in the base of the pyramid as a first step. This process 
uses a process management primitive of the plane controller to create in the 
layer immediately above an ASCending process which is a replica of itself. 
Finally, the process in the base produces data and sends them upward. Because 
each layer hosts at most one process for each class involving vertical data 
transfers, process interaction is specified unambiguously by read and write op­
erations on "anonymous ports." That is, no special management of high-level 
buffers is required, and the programmer easily expresses data communications 
as read from children (versus write to parent) operations in the high-level lan­
guage available. 

The main disadvantage of this scheme is the context switch mechanism. 
This involves saving a fairly large amount of data at a very low level of detail: 
status of PEs, status of vertical communication buffers, etc. The worst aspect 
is that the switch can slow down the pyramid in its vertical transmission capa-



www.manaraa.com

Programming a Hierarchical Structure 285 

bilities. For this reason such a proposal has been discarded in the SPHINX 
system. It remains a very interesting (and elegant) solution for a general control 
subsystem of a linear arrangement of processing units, provided that the context 
switch adds negligible overhead; it is likely that coarse-granularity tasks (rather 
than bit-serial ones) could benefit from it. 

9.2.2.3. Generalized Control through Named Channels 

The communication protocols embedded by the two control subsystems 
described in the previous sections handle the synchronization of data exchanges 
at the bit level, using the registers of the PEs in SPHINX as the shared re­
source. Such a fine-grained synchronization requires very high speed on the 
low-level controllers. 

A more general approach24, 25 consists of considering the planes of the 
pyramid as general-purpose processors, tightly interconnected through a shared 
memory. In the SPHINX system, this memory is the external memory of the 
PEs, which in the design of the pyramid insists on the vertical communication 
links and is realized as a dual-ported memory. 

The control subsystem is thus organized around the concept of "message 
passing." The plane controllers interact through statically allocated channels. 
Channels are physically created as reserved areas of a given length in the 
shared memory: the length can be chosen to suit the high-level granularity 
of communication rather than the synchronization requirements. Channels are 
explicitly declared by the tasks and are managed by high-level primitives such 
as channel allocation-deallocation, channel status read, channel inquiries. They 
allow for unidirectional communication; two tasks on adjacent layers therefore 
require at least two channels to exchange data. Nothing prevents tasks from 
creating more channels of the same type. 

Channel access obeys as usual a producer-consumer protocol: the shared 
area is guarded by an "indicator flag," whose integrity is maintained through 
a proper hardware mutual exclusion mechanism. It consists of synchronizing 
memory accesses from adjacent layers on opposite phases of the system clock 
cycle: if plane p accesses the dual-ported memory on the high phase of the 
clock cycle, plane p + 1 uses the low phase. Thus, the guard of a channel can 
never be updated concurrently by two tasks on different planes, and this allows 
us to code the basic primitives of the producer-consumer protocol with an 
automatic protection scheme. 

Process synchronization through named channels allows considerable more 
flexibility than the other schemes. The programming environment can be based 
on the object paradigm. Data communication can be handled with high-level 



www.manaraa.com

286 Chapter 9 

languages with no regard to the bit-serial processing typical of the hardware. 
The low-level controllers automatically take care of bit streams with negligible 
overhead: synchronization at bit level is carried out only on accessing the guard 
of a channel, not on all the bits of the message being written in the channel. 
The compulsory use of explicit naming of channels does not impair the clarity 
of programs. The throughput of the system can be increased by creating both 
blocking and nonblocking synchronization primitives. Moreover, the dual­
ported memory not only allows a speedy synchronization but also helps in 
augmenting throughput by letting processes deposit messages and continue to 
work. Although optimized for a hierarchical (linear) system, this multi-SIMD 
control modality has many of the characteristics of MIMD shared-memory sys­
tems and is the most general conceived for pyramid machines. 

9.2.3. Multi-SIMD Control Across Space 

It is typical of heterogeneous hierarchical systems, such as those described 
in Chapter 8, to adopt a variety of control strategies. Generally, a richer envi­
ronment is possible with respect to the fine-grained control of ascending and 
descending data movements that is common with the multi-SIMD across-reso­
lution mode. 

Heterogeneous systems support a form of MIMD processing among the 
levels of the hierarchy. In examining the requirements of a general-purpose 
image understanding parallel system, Weems26 highlights some control strate­
gies possible when the hierarchy of the system matches the levels into which 
image understanding is usually broken down. He advocates the need for a sin­
gle "thread of control" at the lowest levels, eventually with local branches due 
to different associations of pixel data. At the higher levels, he suggests the 
need for a predominant task parallelism-that is, the complement of "subsid­
iary data parallelism" at the iconic level. 

The use of a hierarchy of heterogeneous processing layers differs in up­
ward and downward directions. The former supports data reduction and region 
merging and is therefore data driven; the latter supports the realization of alter­
native processing strategies (goal driven) and is a flow of control rather than a 
flow of data. Typically, a single task is instantiated at the highest level of 
control (the host) and migrates downward by splitting and replicating, thus 
originating different subtasks. The interaction among such subtasks can be the 
most general: loose global synchronization, tight cooperation, or even com­
pletely asynchronous concurrence. 

A special case of such alternative control strategies is the one that assigns 
different tasks to different regions of the images. The architecture that best 



www.manaraa.com

Programming a Hierarchical Structure 287 

supports it is the partitioned, heterogeneous pyramid of clusters. An instance 
of such a system is the Warwick Pyramid System described in Section 8.2. 

The control system of a set of clusters is a distributed environment. 27 Each 
cluster is itself a small, hierarchical heterogeneous subsystem. The subarray of 
serial processing elements is driven in SIMD mode by a dedicated, bit-slice 
sequencer. The transputer on top of the cluster sends to the sequencer the 
macrocommands to be translated and delivered to the sub array . Multiple pro­
cesses can be active in the transputer: beyond communications with other 
transputers, they can effectively trigger more tasks for the SIMD sub array , 
thereby creating a time-sharing multiprogram environment. Such vertical com­
munications use a shared memory as the common resource. 

When the Warwick system consists of more clusters, the bidimensional 
MIMD network thus obtained can run both completely independent tasks (the 
subarray edges are connected in local toruses) and cooperating ones. If cooper­
ation is at the symbolic level, the usual synchronization mechanisms of the 
transputers are used. Instead, when all the clusters or a part of them want to 
enter a tightly orchestrated processing mode, a special hard-wired synchroniza­
tion mechanism is activated from the sequencers. A network of wired-OR sig­
nals is used to create a barrier for process synchronization: when all clusters 
meet the barrier, the pyramid can enter a strict SIMD mode or a more complex 
SPMD mode. Thus, low-level, massive data exchanges are not synchronized 
between different tasks where each one has control of the subarrays (this was 
the approach in the Multi-SIMD across-resolution mode). The adopted control 
strategy is considerably simpler. 

9.3. CONCLUSIONS 

The programming environment of hierarchical systems has been discussed 
and classified on the basis of the few proposals that explicitly address these 
systems. Up to now, these proposals never became fully developed and inte­
grated tools because pyramid systems have not yet reached the stage of exten­
sive industrial exploitation and the prototypes still remain confined to small­
and medium-scale implementations. 

Even though formalization of the hierarchical cellular logic was estab­
lished 10 years ago, the languages, here described, based on extension of the 
C languages have not been sufficiently standardized either in the typing mecha­
nism or in the semantics of the control structures. 

The control environment is even at an earlier stage. In fact, the great 
variety of solutions for hierarchical architectures (fine-grained, coarse-grained, 



www.manaraa.com

288 Chapter 9 

and heterogeneous) prevents adoption of a unified scheme. The status of the art 
here introduced covers the basic issues of the control strategies for the most 
popular systems. 

REFERENCES 

1. W. D. Hillis and G. L. Steele Jr.. Data Parallel Algorithms, Comm. ACM 29(12), 
1170-1183 (1986). 

2. K. E. Iverson, A Programming Language, Wiley, New York (1962). 
3. C. A. R. Hoare, Communicating sequential processes, Comm. ACM 21(8), 666-677 (1978). 
4. J. M. Sipelstein and G. E. Blelloch, Collection-oriented languages, Proc. IEEE 79(4), 

504-523 (1991). 
5. J. Mehat, La programmation des machines SIMD avec Ie langage de programmation Pyr-e, 

BIGRE, September, 1989. 
6. A. P. Reeves, Parallel Pascal: an extended Pascal for parallel computers, J. Parallel Distrib. 

Comput. 1, 64-80 (1984). 
7. C* Programming Guide, Thinking Machine Corporation (1991). 
8. G. Sabot, The Paralation Model: Architecture-Independent Parallel Programming, MIT 

Press, Cambridge, MA (1988). 
9. S. Chatterjee, G. E. Blelloch, and M. Zagha, Scans primitives for vector computers, Proc. 

Supercomputing 90, November, 1990. 
10. D. Nassimi and S. Sahni, Data broadcasting in SIMD computers, IEEE Trans. Comput. TC-

30(2), 101-106 (1981). 
11. J. Levaire and L. Bouge, On the semantics of massively parallel SIMD control structures, 

Report N. 91-06, LIP, Ecole Norrnale Superieure de Lyon (1991). 
12. G. Plotkin, An operational semantics for CSP, in Formal Description of Programming Con­

cepts (D. Bjorner, ed.), IFIP TC-2 Working Conf., Garrnish-Partenkirchen (1982). 
13. P. Clermont, A. Merigot, and B. Zavidovique, Prograrnrnation et contr6le des machines hy­

perparalleles, Lecture Notes Ecole Internationale d'Informatique de l'AFCET, Friburg, Swit­
zerland, 1990. 

14. S. L. Tanimoto, A hierarchical cellular logic for pyramid computers, J. Parallel Distrib. 
Comput. 1, 105-132 (1984). 

15. S. L. Tanimoto, J. P. Crettez, and J. C. Simon, Alternative hierarchies for cellular logic, 
Proc. 7th Int. Conf. Pattern Recognition, Montreal, Canada, 1984, pp. 236-239. 

16. J. Serra, Image Analysis and Mathematical Morphology, Academic Press, New York (1982). 
17. J. J. Pfeiffer, HCL: a language for low-level image analysis, J. Parallel Distrib. Comput. 8, 

231-244 (1990). 
18. V. Di Gesil, A high level language for pyramidal architectures, in Pyramidal Systems for 

Computer Vision (V. Cantoni and S. Levialdi, eds.), pp. 329-339, Springer-Verlag, Berlin 
(1986). 

19. V. Di Gesil, B. Lenzitti, and D. Tegolo, A medium level language for pyramid machines, in 
Issues on Machine Vision (G. Pieroni, ed.), pp. 117-133, Springer-Verlag, Wien (1989). 

20. V. Di Gesil, "Pictorial languages: concepts and data structures, JlETE on Pattern Recogni­
tion. 37 (56): 520-540 (1991). 

21. S. Levialdi, Software issues for machine vision, in Issues on Machine Vision (G. Pieroni, 
ed.), pp. 177-208, Springer-Verlag, Wien (1989). 



www.manaraa.com

Programming a Hierarchical Structure 289 

22. P. Clennont and A. Merigot, Real time synchronization in a multi-SIMD massively parallel 
machine, Proc. Workshop CAPAMI, Seattle, WA, 1987, pp. 131-136. 

23. J. Mehat and A. Merigot, Controlling and programming the SPHINX multi-SIMD pyramid 
machine, Proc. 2nd Symp. Frontiers of Massively Parallel Computation, Fairfax, VA, 1988, 
pp. 423-428. 

24. S. Bouaziz, E. Pissaloux, A. Merigot, and F. Devos, A communication mechanism and its 
implementation in the multi-SIMD massively parallel machine SPHINX, Microprocess. Mi­
croprogram. 32, 39-44 (1991). 

25. Yang Ni, Realisation d'un circuit VSLI multi-processeur et definition d'un modele de controle 
dynamique, These, Universite de Paris-Sud, Orsay (1990). 

26. C. C. Weems, Architectural requirements of image understanding with respect to parallel 
processing, IEEE Proc. 79(4), 537-547 (1991). 

27. G. R. Nudd, D. J. Kerbyson, T. J. Atherton, N. D. Francis, R. A. Packwood, and G. J. B. 
Vaudin, A massively parallel heterogeneous VLSI architecture for MSIMD processing, in 
Algorithms and Parallel VLSI Architectures (F. Deprettere and A. Van der Veen, eds.), 
(1991), pp. 463-472, Elsevier, Amsterdam. 



www.manaraa.com

Chapter 10 

Pyramidal Tools and Applications 

The pyramidal architecture supports several powerful paradigms for "machine 
algorithms," including pyramid building, tree search, and horizontal and verti­
cal propagation. Such paradigms are supported by a set of basic algorithms, 
for which many types of pyramid or pyramid-related approaches and data struc­
tures have been proposed. This chapter reviews some of these fundamental 
techniques from a computational theoretical point of view and in the light of 
their effectiveness in application development. 

10.1 INTRODUCTION 

This chapter gives an overview of the most important applications of the 
pyramid multiresolution representation. It is not an exhaustive review of multi­
resolution algorithms, because the number of proposals and of solutions is con­
tinuously increasing. The books edited by Tanimoto and Klinger,l Rosenfeld,2 
Cantoni and LevialdV and UhrA (see, in particular, the paper by Dyeii) offer 
a broad perspective on multiresolution strategies and algorithms. The bibliogra­
phy collected each year by Rosenfeld6 is an invaluable source for up-to-date 
research on single items. 

We have focused on algorithms for the compact, usually SIMD pyramid, 
and for the multiresolution pipeline pyramid systems because of the effort put 
in by research teams building the prototypes to show effective application for 

291 



www.manaraa.com

292 Chapter 10 

their systems. The model of a pyramid computer that basically resembles the 
systems just mentioned has been considered for a very long time as a promising 
platform for solving many vision problems with logarithmic speedup over pla­
nar meshes. 

We begin the chapter by quickly reviewing theoretical results that indicate 
the extent to which the gain of the pyramid computer is actually logarithmic. 
The remaining sections cover the more relevant problems of computer vision, 
basically at low and intermediate levels. To begin with, we have discussed 
irregular pyramid data structures that, even if not directly matched to the pyra­
mid computer, are closer to it than to any other parallel platform. It can be 
proved7 that for some of these alternative constructions, such as the so-called 
overlapped pyramids commonly used in many segmentation tasks, there are 
quite efficient implementations on that basic architecture. 

The rest of the chapter covers segmentation, texture analysis, template 
matching, curves, shapes, image compression, motion, and stereo. These basic 
paradigms are the tools for assembling significant real-life applications: the 
nearly logarithmic complexity of such algorithms in the pyramidal environment 
and the (eventually available) true parallel pyramidal systems are the pathway 
for substantial speedups and increased system throughput. 

10.2. COMPLEXITY OF SOME BASIC ALGORITHMS 

The rich and regular interconnection structure embedded in the basic quad 
pyramid (see Chapter 3 for a formal definition and Chapter 5 for examples of 
machines that implement this topology) has stimulated great and persistent in­
terest in the capabilities of such a network to support fundamental algorithms 
drawn from areas such as computational geometry, graph theory, and statistics. 
With respect to computer vision and image processing, such algorithms are 
important from the theoretical point of view, because they form the basis for a 
wide computational platform, and from a more practical point of view, since 
many of them can become part of the software libraries of functioning pyrami­
dal machines. 

Since its introduction, the pyramid computer (PC; in the following, we 
refer to the standard quad-pyramid computer of base edge length N = 2n) has 
been proposed as an efficient parallel computer architecture because it merges 
the structure of an N x N standard mesh with that of an (n + I )-level quad tree. 
The logarithmic diameter of the PC due to the tree component is the basis for 
obtaining logarithmic time algorithms not achievable in the mesh. While this is 
indeed an established result for some basic problems (bit counting, area, perim-



www.manaraa.com

Pyramidal Tools and Applications 293 

eter, and in general all algorithms in which a processor receives a constant 
amount of information from its children), a series of works by Miller and StoutB 
have proved that such a target cannot be obtained for the majority of geometry­
related problems. The theoretical analysis carried out has highlighted lower 
bounds for worst-case problems9 and has produced some standard data move­
ment routines lO specially suited to the PC for minimizing the overhead due to 
the tapering structure of the pyramid. 

Historically, among the first contributions to basic algorithm design for 
the PC is the analysis of sorting, histogramming, median filtering, and other 
statistical operations carried out by Tanimoto. II. 12 The sorting algorithm con­
sists of iteratively moving the local maxima, detected at each PE, upward 
through the levels with four compare-exchange operations. In O(log N) time the 
first maximum is at the apex, where it is extracted and replaced by the smallest 
number in the representation used. Successive maxima emerge one after an­
other in constant steps. This approach to sorting is not the best from a purely 
theoretical point of view, since it has O(N2) complexity, but it has the advan­
tage of being suited to the serial extraction of the sorted list out of the apex of 
the pyramid; moreover, it can be used for median filtering. Indeed, at a given 
intermediate level in the PC, the sorting algorithm produces the series of 
maxima contained in the underlying subpyramids, and on the basis of this Tani­
moto builds the median over chosen windows. by iterating the local sorting 
operations. 

A theoretical result by Stout13 shows that the PC is inherently equivalent 
to the mesh as a sorting machine. The well-known O(N) limit in the mesh 
cannot be improved through the pyramid's upper layers. Sorting requires mov­
ing O(N2) data from one half of the base to the other half, and the maximum 
bandwidth available is the number N of links between the two halves, so the 
required time is O(N). 

Moving data between PEs in the base, or even between PEs of different 
levels, is a fundamental operation in many geometric problems. An extensive 
study of pyramidal data movements lO has highlighted the central role played by 
the midlevel of the pyramid, which contains ViII x ViII PEs. This level was 
shown to be the bottleneck for those data movements that require a massive 
exchange of data between distant areas in the base of the pyramid. As an exam­
ple, algorithms that adopt a divide-and-conquer strategy14 are best implemented 
as follows: in a first phase, the O(N2) data are reduced to O(N); these are 
moved quickly, through one of the specialized pyramid move routines, to the 
middle level of the pyramid, where they are shifted in meshlike mode; the 
downward movement is then carried out with another specialized technique, 
known as funnel read. 10 



www.manaraa.com

294 Chapter 10 

The connected component labeling problem is solved in this way with an 
asymptotic complexity O(VN), a substantial improvement over the O(N) result 
obtained in the mesh. Furthermore, this strategy is much more general than the 
approach followed by Tanimoto: 15 "compact" objects are labeled in O(N) by 
using only the quad-tree connections. 

A host of optimal algorithms for computational geometry problems is 
solved by Miller and Stout. 16 They also show that many algorithms studied for 
a single geometric object remain valid when the base of the pyramid contains 
more figures. They introduce the notion of "essential pyramid",17 which simu­
lates a true pyramid whose base covers a single figure in the scene, thus 
allowing the use of algorithms designed for complete pyramids with a single 
object. 

10.3. SPECIAL PYRAMIDS 

The basic architecture of the quad pyramid is not the only possible hierar­
chical structure for exploiting logarithmic grouping properties. In literature, 
other pyramidal arrangements have been proposed that try to solve the disconti­
nuities introduced by the rigid subdivision of the space into nonoverlapped 
quadrants generated by the basic pyramid. 

Essentially, we can identify two broad classes: regularly sampled, over­
lapped pyramids, and irregularly sampled, special pyramids. The former class 
includes the "dual pyramids"; the latter includes the "stochastic," "adap­
tive," and "custom-made" pyramids. 

1 0.3.1. Overlapped and Dual Pyramids 

Overlapped pyramids are built by using a reducing factor r smaller than 
the support w that links a parent to its children (see Section 3.5.4 for a formal 
definition). The sets of elements in the base of the pyramid that are descendants 
of a given node in an upper level are known as the receptive field of that node, 
in analogy with the structure of the peripheral vision system in humans. A very 
common situation is the case in which a parent has 16 children (w= 16) ar­
ranged as a 4 X 4 block and a child has four possible parents, reflecting the fact 
that 4 x 4 blocks overlap horizontally and vertically by 50%; the resulting re­
duction factor r is 4. Variations of this case are possible, and a systematic 
classification is available in Kropatsch. 18 This structure has been widely used 
in segmentation tasks, as we will see. 

Another form of overlapping is that generated by the "dual pyramid. "19 



www.manaraa.com

Pyramidal Tools and Applications 

Figure 10.1. The construction of a "dual 
pyramid." Alternate tessellation directions at 
45° produce a 50% overlapping. 

295 

In this case, a recursive method generates a pyramid by rotating the meshes by 
45° at alternate levels. This is obtained by considering half the diagonal of a 
square as the edge of the square of the next level; this produces a degree of 
overlapping equal to 50%. The top-down generation of the dual pyramid pro­
ceeds by placing a 2 x 2 square over the center of the parent; the length of the 
edge of each subsquare is half the diagonal of the parent. The lower levels as 
a whole soon take the shape of an octagon (see Figure 10.1). The resulting 
pyramid has a variable resolution, a variable reduction factor, and a fixed sup­
port w=4. Thus, each node has a maximum of two parents and exactly four 
children, located at equal distances from its center. This last feature is notably 
different from the other overlapping cases mentioned and could be helpful dur­
ing segmentation by dynamic linking, as we shall see in Section 10.4. 

10.3.2. Stochastic, Adaptive, and Custom-Made Pyramids 

The second class of pyramids, irregular pyramids, alters the structure of 
the basic quad pyramid quite drastically. A first irregular component is intro­
duced in the decimation process, which reduces the nodes of the successive 
levels. Instead of applying a regular sampling grid, as in all geometric pyramid 
construction, Meer20 has proposed a random selection process, whose outcome 



www.manaraa.com

296 Chapter 10 

is the "stochastic pyramid." In this pyramid, the nodes of the level above the 
base (and recursively for the upper levels) are chosen from those in the base 
by applying a maximum criterion to the outcome of a stochastic process, which 
is executed in all base cells. A cell survives and becomes a node in the level 
above only if the randomly generated value is the largest among those of its 
immediate neighbors (in truth, the random process is used three times to obtain 
a stable configuration). The average reduction factor (decimation factor) is 
5.44, with a negligible standard deviation. The selection of the nodes in the 
upper levels is only half of the process in generating the hierarchy. The second 
half consists of establishing hierarchical links between parents and children. 
This process is started from the surviving cells (parents) and is actually an 
expansion in the neighborhood. An expanding parent "conquers" more and 
more cells that make up its support. The growing support of a parent eventually 
touches the growing support of another parent; in this situation the expansion 
stops, and the shared child links itself only to the parent having the strongest 
random variable. The stochastic pyramid can also be defined in the monodi­
mensional case with straightforward simplifications. 

The resulting hierarchy is very irregular, though it has been used effi­
ciently in some algorithms as an alternative to the more usual pyramid, such as 
curve representation,21 bimodality analysis and object-background delinea­
tion,22 connected component analysis of labeled images, and segmentation 
of gray-level images. 23 The advantages of this approach are essentially the 
shift-invariance property of the stochastic pyramid, whose structure does not 
depend on the geometry of the plane tessellation, and its robustness to struc­
tural perturbations. 22 

The random election process of the stochastic pyramid has no relation at 
all to the content of the image in the base of the pyramid. To obtain a more 
realistic hierarchy, 10lion and Montanvert24 introduced the "adaptive pyra­
mid." In such a pyramid, the decimation process is carried out by letting cells 
survive if they are a local extreme of an interest operator. For example, in a 
segmentation task it can be useful to isolate regions of pixels with a similar 
gray level. The chosen operator in this case is the variance of gray level in the 
region, and the surviving cells are those where the variance is a minimum. The 
growth of the regions (that is, the identification of the children and of the 
receptive fields) obeys an expansion rule similar to that of the stochastic pyra­
mid. The links are established with the parent according to a criterion on the 
gray-level contrast: the least contrasted cell in the support is the best parent and 
therefore is chosen. The adaptive pyramid is slightly larger than its stochastic 
counterpart and was used successfully on the same type of problems with com­
parable results. 



www.manaraa.com

Pyramidal Tools and Applications 297 

A spectrum of pyramid representations that bridges the regularly sampled 
ones with the more irregular, adaptive pyramid was proposed by Peleg et al. 25 

They used the term "custom-made" pyramid to denote a type of geometric 
construction that resamples a regular M x N grid into a regular K x L smaller 
one; the resampling can be uniform or weighted, and in both cases a cell in 
one level contributes a finite quantity to its "parent(s)" in the level above. The 
construction of the pyramid results from the iterative application of the resam­
pIing scheme at successive levels, possibly varying the geometry of the next 
grid at every next level. With respect to overlapped pyramids, the hierarchy is 
more variable, but it is still determined by the geometric parameters defining 
the resampling ratio. However, in this structure, too, the resampling can be 
made dependent on the image content by using an interest operator, which 
influences the weights. Peleg et al. used a measure of the "busyness" of a 
region to establish the variable degree of resampling: a smoothed absolute value 
of the Laplacian gives a clue to the regularity of the region. The coarser the 
region, the wider the support used in building the next level; areas richer in 
contrast, on the contrary, are sampled more finely. 

10.3.4. Centralization Graphs 

A general mechanism for implementing interresolution communications in 
pyramids has been proposed by Clermont. 26 It is based on a graph that has a 
subset of the pyramidal topology defined in Section 3.5.4. This graph is called 
a centralization graph, or C-graph, and consists of a subset of the pyramid links 
selected on the basis of the full-resolution image data (pyramid base). 

Let us call R the planar graph of the base in which the centers of seg­
ment pixels that are adjacent are linked (with 4- or 8-connectivity); F(p) the 
projection of a node p, consisting of the set of the descendent extrema of 
p (nodes without descendents); F(G) the projection of a graph G (a general 
subset of the pyramid graph) obtained by the union of all F(p) with p belonging 
to G. 

A pyramid subgraph G is a C-graph if and only if 

• F(G) is included in the pyramid base. 
• For each p belonging to G, F(p) is connected. 
• For each PI and P2 connected in G, F(PI) and F(P2) are connected in R. 

Figure 10.2 shows two instances of C-graphs for an 8 x 8 binary image. 
Instead of obtaining a unique tree, a C-graph builds up a forest. The roots of 
the trees in the centralizing forest are called CEN nodes. 27 In general, an image 



www.manaraa.com

298 Chapter 10 

Figure 10.2. Two examples of C-graphs built 
on the same image containing two segments, by 
adopting a 4-connectivity. The CEN nodes are 
highlighted by 0 (ordinary nodes bye). 

segment can have many CEN nodes (see Figure 10.2). An image segment is 
characterized by subregions with the following properties: 

• Each full-resolution segment pixel belongs to one subregion. 
• Every subregion is dominated by a subtree of the pyramid. 
• Trees which correspond to different subregions are disjointed. 

On the basis of the C-graph, global computations on a connected set can 
be effectively computed in parallel by reduction operations from the pyramid 
base to the CEN nodes, by downward broadcasting in the reverse direction, 
and with subregion communication through the intralevel links. These primi­
tives supply a common framework for dealing with large and irregular data 



www.manaraa.com

Pyramidal Tools and Applications 299 

movements on image segments working in SIMD mode on a fine-grained pyra­
mid. Many intermediate-level image processing tasks (such as labeling, seg­
mentation, polygonal approximation, etc.) can benefit from these primitives. 27 

10.4. PYRAMIDAL TECHNIQUES 

While Chapter 2 covers very general multiresolution strategies, the follow­
ing section details specific techniques useful in many applications. Common 
characteristics of these techniques are the overall speedup in the applications 
and the effective use of limited computing resources in comparison to the com­
plexity of the tasks. Starting with the exploitation of pyramids in mathematical 
problems, we shall then consider classical image-related problems such as seg­
mentation, object recognition, image coding and transmission, and stereo and 
motion analysis. 

10.4.1. Multigrid Numerical Methods 

Many image analysis problems can be formulated with a common mathe­
matical foundation according to variational principles or to partial differential 
equations (PDE). Among them are optical flow computation (see Section 10.6) 
and shape-from-shading. 

The formulation of such physical problems in the continuous domain ei­
ther as the minimization of a functional or as the solution of PDE with proper 
boundary conditions leads, after discretization, to the solution of large systems 
of linear equations of the form Ax = b, where A is a band sparse matrix, b is 
the vector embedding the boundary conditions and other external terms, and x 
is the vector of the points to be calculated. In the domain of vision, x is itself 
a large grid of points that uniformly sample the physical world (surface, mov­
ing points, etc.) at a single resolution. Among the numerical methods for solv­
ing the linear systems, those based on iterative algorithms best match the com­
putational characteristics of vision problems based on near-neighborhood 
primitives.28 Unfortunately, the propagation across the grid of the approximate 
solution is very slow. Since nearly all the formulations of the underlying physi­
cal problems are based on a global constraint, such an extended propagation is 
necessary to obtain a good solution. 

To alleviate this situation, mathematicians have conceived a new class of 
algorithms that considerably speedup the convergence by using multiple grids 
for the approximate solutions. Such algorithms are known as "multigrid meth­
ods." A fairly complete review of their mathematical properties can be found 



www.manaraa.com

300 Chapter 10 

in Hackbusch.29 We will only consider instances of such methods in the vision 
context, based on the version of multigrid relaxation as formulated by Brandt. 30 

Applications of this principle to low-level computer vision are reported by 
Glaze~8 and Terzopoulos31 , 32 in optical flow computation, visual surface re­
construction, shape-from-shading, and brightness determination. A detailed dis­
cussion of the applications themselves is omitted; however, optical flow is dis­
cussed in the section regarding motion. 

Following Terzopoulos,32 we can identify the following components of the 
multigrid methodology: (i) a multiresolution representation of the field of analy­
sis; (ii) the local iterative process that creates the approximate solutions at each 
level; (iii) a coarse-to-fine and a fine-to-coarse distribution process, which prop­
agates the approximate solutions in the hierarchy, thus effectively speeding up 
the convergence of the algorithm; (iv) a global strategy, which dispatches the 
control of algorithms in the various levels and activates the upward and down­
ward data movements. 

The multiresolution representation consists of a stack of meshes built from 
the finest one by straight subsampling. The reduction factor is usually 4 and 
the grids are aligned, so each point in a coarser resolution level is registered 
with a point in each of the finer ones. This multigrid structure is closely related 
to the definition of the basic quad pyramid. The real difference is in the data 
transfers between levels. Indeed, the fine-to-coarse distribution process used in 
this method is a straight injection from the grid point in the finer level into the 
corresponding point in the coarser one; moreover, the coarse-to-fine downward 
data movement is usually obtained through bilinear interpolation. 

The local iterative process executed on the multigrid structure speeds up 
the computation by quickly deriving approximate good solutions at a coarse 
level, where the near-neighbor propagation due to the relaxation spans wide 
sections of the basic domain. The rationale for this fact comes from an analysis 
of the contributions to the errors in the approximations. At a given level in the 
hierarchy, the iterations of the relaxation process quickly cut off the high-fre­
quency components of the error but cannot eliminate the low-frequency ones. 
However, the frequency spectrum is split into octaves from the multiresolution 
structure, and the octave of the next coarser level includes these low-frequency 
components. The local process in this coarser level takes care of approximately 
half the octave and recursively redirects its low-frequency half-octave to the 
next coarser one (the mathematical foundation of this behavior of multiresolu­
tion representation is highlighted in Chapter 2 in the discussion regarding wave­
let decomposition). 

The global control strategy of the multigrid approach can follow two ap­
proaches (see Brandt,3D Glazer,28 and Gannon33 for details). In the former, the 



www.manaraa.com

Pyramidal Tools and Applications 301 

upper levels execute the local relaxation process to compute the updates to the 
solution, which exists in full only in the finest level; the convergence criterion 
is a threshold set at the beginning for the finest level and is used to derive 
dynamic thresholds for upper levels. The second approach has an approximate 
solution at all levels, and the local relaxation process computes a new approxi­
mation and a new set of updates for the benefit of neighboring levels. These 
updates are propagated as described above. Following Gannon,33 the flow of 
data can be depicted by a "V" cycle having two sequential steps, the fine-to­
coarse phase preceding the coarse-to-fine one. This method is more amenable 
to computer vision problems since it directly computes the solution at multiple 
levels of resolution. The terminating conditions of the local iterative processes 
depend on global information, since they are usually written as a comparison 
between a threshold and a norm on the error. Sometimes, fixed schemes based 
on an a priori limited number of iterations are suitable as well; they keep all 
computations on a strictly local basis. 

The multigrid approach is a major application to computer vision that ben­
efits from the massively parallel homogeneous pyramid described in Chapter 5. 
The shortcomings of the method due to the homogeneous handling of the field 
of analysis (to be discussed later in the contest of motion) can be easily over­
come on the same parallel platform. 

10.4.2. Image Segmentation 

The hierarchy embedded in the pyramid offered a sound computational 
paradigm for image segmentation and was used with the various approaches 
typical of this task. We can group them into region-oriented (a homogeneity 
criterion groups pixels into "uniform" areas) or border-oriented categories (the 
discontinuities in some image property, such as gray level, color, local texture, 
etc., are used to delineate one area from the others). In this section, we review 
the ways in which the hierarchy helps in the implementation of algorithms in 
both strategies. 

10.4.2.1. Region-Based Segmentation by Pyramid Linking 

The first proposal for a hierarchical segmentation based on a region prop­
erty was made by Burt et al. 34 on the basis of an overlapped gray-level aver­
aged pyramid. The pyramid is initially constructed by simple averaging of the 
4 x 4 pixels that make up the support of each parent node (as noted, the degree 
of overlapping is 50% along the cardinal directions). The hierarchical links are 
then established (starting from the base) by choosing, for each pixel in the 



www.manaraa.com

302 Chapter 10 

lower levels, one of its four candidate parents on the basis of a homogeneity 
criterion (e.g., the minimum gray-level distance). Once this choice is made, the 
gray-level values in the parent level are recomputed by using only the values of 
the linked children. The process is then iterated until convergence is obtained. 
Since at any level one pixel is linked to a single parent out of four candidates, 
the end effect of this procedure is to segment the image into four regions. 
These are the "receptive fields" of the four nodes in the next-to-Iast level of 
the pyramid: the four trees that originate from this level are the four most 
homogeneous partitions of the averaged gray-level pyramid. 

This basic scheme has been improved in many aspects by subsequent pro­
posals. Hong et al?5 studied a variation based on "weighted linking": here the 
hierarchical connections between two adjacent levels are computed by making 
each node contribute initially to all its four candidate fathers. The weight of 
this contribution is iteratively reinforced or decreased until a stable situation is 
obtained. The choice of weighting function is critical and can lead to weights 
that converge to 0 and 1 (as in the previous case) or to equal values. The effect 
of including the values of the within-level neighbors also proved to be helpful, 
especially when dealing with the first levels of the pyramid. 

In all cases, the hierarchy of links extends upward throughout the pyra­
mid. A different strategy has been pursued by other authors;36. 37 it leads to a 
forest-based segmentation. The linking process is uriforced. This means that 
averaged gray-level pixels in intermediate levels are allowed to become a local 
"root," without linking to any of the candidate parents, on the basis of a local 
intralevel criteria. Non-root pixels are assigned to the strongest candidate par­
ent, and this final top-down linking phase produces the segmentation of the 
image. Rooting strategies and some measure of optimality in the linking pro­
cess have also been investigated. 36 

A stochastic pixel relinking method was proposed by Spann38 to segment 
a figure against the background. The pyramid is a composite data structure with 
an overlapped 4 x 4 support: each node stores both gray-level values and spatial 
moments computed in hierarchical fashion according to Burt et al. 34 Children­
to-parent links are either on (value 1) or off (value 0). The updating of the links 
is guided by a simulated annealing process that leads to global minimization of 
a locally based measure of fitness to a model. The resulting algorithm performs 
especially well in low signal-to-noise ratios. 

10.4.2.2. Boundary-Based Hierarchical Segmentation 

The process of delineating objects in an image by the use of discontinuities 
(boundaries) is the dual of the region-based one and was the first paradigm of 



www.manaraa.com

Pyramidal Tools and Applications 303 

multiresolution planning, as described in Section 2.5. In general, the hierarchy 
can be exploited in two main ways. In the first approach, edges are detected at 
the highest resolution available and then traced, through the reduced resolution 
according to the scale-space methodology, 39 on the basis of the zero-crossing 
persistence across-resolution property.40 In the second case, the edges are com­
puted at multiple resolutions on averaged gray-level pyramids and then linked 
in two steps (bottom-up and top-down respectively41). Alternatively, edges are 
used to identify pixels in low resolution that are liable to be the ancestors of 
compact objects at high resolution.42 

The former approach will not be discussed here, mainly because the ma­
jority of the properties were already introduced when we analyzed the Lapla­
cian pyramid in Section 2.4.3. 

The linking approach pursued by Hong et al. 41 tries to capitalize on both 
of the representations of the gray-scale pyramid and of the discontinuity pyra­
mid; the latter is computed at all levels by applying a local edge detector to the 
nonoverlapped averaged gray-level pyramid, initially built on top of the image. 
The critical phase of linking edges is, however, performed by using 4 x 4 
squares of 50% overlapped support in a bottom-up procedure. A straightfor­
ward criterion selects the parent node by comparing the local edge direction 
with that of the four candidate parents and then establishes the link with the 
most similar one. This strategy allows unforced linking when no candidate 
parent is within a given thresholding angle with respect to a node edge direc­
tion. Hence, many local roots appear in the pyramid. If the image contains 
compact objects with smooth boundaries, the algorithm is able to consistently 
delineate the objects, but if the shape of the boundary is rich in different curva­
tures the hierarchical description of its edges will contain many roots at differ­
ent levels of the pyramid. A later top-down process is proposed to rank local 
edge segments as belonging to the same boundary. 

The edge information computed at different resolutions was used in an­
other way without explicitly linking edge segments across resolutions.42 To 
guide the identification of compact objects, the pyramid of edges helps to iden­
tify locations at low resolution that are surrounded by strong edges. This cue 
is used in top-down mode by propagating "scores" indicating "compactness" 
computed in the locally delineated regions. Thus, the edge information is used 
consistently with the gray-level one to control top-down region-growing, re­
gion-splitting process in a bounded search. 

The hierarchy of the 4 x 4 overlapped pyramid is used to reduce the com­
putational complexity of an edge detector that extends the Hueckel operator in 
multiresolution.43 In this proposal, the sharp circular function that Hueckel uses 
to model an edge in the image as the best fit to line discontinuity is replaced 



www.manaraa.com

304 Chapter 10 

by a more regular Gaussian. This choice allows us to combine the construction 
of the multiresolution gray-level pyramid with the convolution by Gaussian­
like kernels. The key point in the algorithm, however, is the hierarchical com­
putation of the approximation of the edge model at multiple resolutions. The 
approximation consists of the projection of the image over the functions that 
generalize Hueckel's basis. In this case, such functions are polynomials (of 
degree 2 at the most) of the pixel coordinates. Therefore, the projections are 
easily computed as linear combinations of moments; and moments can be ob­
tained very efficiently on the pyramid.34, 44 

It is well known that noise is a major problem when locally based edge 
detectors are used. This problem is partially removed by acting on a smoothed 
version of the image. We note that the overlapped, averaged pyramid used in 
so many algorithms for multiresolution segmentation introduces a first form of 
smoothing. A more precise approach was investigated by Park and Meer.45 

They use a nonoverlapped standard image to quickly compute global estimates 
of the noisy image. Then they implement an adaptive smoothing algorithm 
which classifies pixels as centers of maximal homogeneous subareas and as­
signs them the mean gray value of the maximal region. Pixels close to a discon­
tinuity must be sensible to gray-level variations and must therefore receive a 
mean value computed on smaller subareas. The pyramid multiresolution repre­
sentation is used to identify such maximal subareas. The process is top-down: 
pixels are "colored" with the previously computed mean values if the standard 
deviation in the two successive higher levels allows them to be considered part 
of a homogeneous region. Otherwise they are processed more locally with a 
further run of the adaptive least-squares smoothing algorithm. The end result 
of this smoothing technique is that edges are blurred much less than in over­
lapped image segmentation approaches. 

10.4.2.3. Object Delineation 

A special case of image segmentation is object delineation-that is, the 
isolation of a single object on a noisy background. The previous segmentation 
methods, based on pixels linking and border extraction, did not use the im­
portant property, valid in this case, that the pyramid tapers the dimension of 
the object in successive levels until the object degenerates to a single point. If 
the object is bound by a square of edge length 2L (we assume that the shape is 
roughly compact), its representation in a 2 X 2 nonoverlapped pyramid becomes 
a single point at a level L - 1 planes above that of the image. 

This fact was recognized and first applied in a algorithm by Rosenfeld and 
Sher.46 On an intensity pyramid built without overlapping, they applied Lapla-



www.manaraa.com

Pyramidal Tools and Applications 305 

cian spot detectors to identify the root of a tree having the object as its basis. 
The rationale for the use of the Laplacian is that the contrast is the highest 
when the object degenerates into a single point against a roughly constant (aver­
aged) background. The actual identification of the root was carried out by con­
sidering three consecutive levels. The chosen root is the starting point of a tree­
growing process, which uses a wider 4 x 4 support: every pixel compares its 
value with that of its four possible parents. The pixel is added to the expanding 
tree if it is near (using a distance that takes into account gray-level difference 
and spatial position with respect to the candidate parent) the parent already 
belonging to the same tree. When the tree-growing process reaches the base of 
the pyramid, pixels in the tree make up the object, while the others are in 
the background. 

This algorithm was successfully adapted to the problem of delineating a 
cluster of points47 rather than a roughly continuous gray-level surface. The 
tapering of the cluster across the resolution is as reliable as that involving a 
compact object, but the top-down tree-growing process fails to correctly delin­
eate the pixels in the base of the pyramid. Indeed, according to the cluster 
characteristic, the probability even in the cluster area that a point randomly 
selected belongs to the pattern is quite low. Therefore, the final stages of tree 
growth fail to collect many such points that are much closer (according to the 
tree-growing distance criterion) to the background. The problem was tackled 
by using an instance of the general class of "consensus algorithms," which 
seek a robust solution to a single problem by using more algorithms or more 
executions of the same algorithms run with slightly varied parameters.48 In the 
cluster delineation problem, consensus is obtained by shifting the initial cluster 
by a few pixels in the base, running the delineation algorithm described above, 
and ~Ring successive reconstructions obtained in the base. The improvements 
are quite effective. 

An important difficulty with this approach is the too sharp tapering of 
the nonoverlapped pyramid. A subsequent proposal49 applies the usual 4 x 4 
overlapped pyramid construction and then starts a top-down delineation process 
at a coarser resolution level. Instead of looking for the single point that summa­
rizes the object, the process reduces the object to a set of edge pixels. For each 
edge pixel, two roots are created, one interior to the object, the other exterior 
to it. Both are used in a tree-growing process, which uses a confidence measure 
to assess the degree with which a pixel is classified as belonging to either class. 

This is necessary because pixels located at higher levels summarize infor­
mation from wide areas in the image. Being on the interior or on the exterior 
of the object is not a firm criterion as in the base. The use of overlapped 
pyramids in the construction of the averaged intensity pyramid, the confidence 



www.manaraa.com

306 Chapter 10 

measure in the tree-growing phase, and the two-tree approach (interior and 
exterior) considerably improve the delineation of the object, especially in high 
signal-to-noise ratios. 

The delineation process was also carried out reliably with the irregular 
hierarchy defined by the adaptive pyramid. 24 

10.4.2.4. Segmentation by Texture 

The analysis, classification, and segmentation of textured images was 
studied in depth in the context of multiresolution. This is not surprising, be­
cause the nature of texture is intrinsically related to multiple scales, in which 
the tonal primitives and the spatial primitives are best highlighted. In fact, it is 
well known that the distribution of patches of roughly constant gray-level areas 
can be perceived as a predominant gray-level phenomenon when the resolution 
is coarse. Dually, by analyzing the texture at a finer scale, the spatial struc­
ture of the patches is more evident than the gray-level content of the patches 
themselves. 50 

Accordingly, the analysis of texture in the pyramid environment was ad­
dressed both as the segmentation of the image into patches of uniform gray­
level properties and as the grouping of structural features (texels) similar to 
each other and spread into areas perceived as differently textured regions either 
because of texel differences or because of the composition differences. 

The first approach was pursued within the context of overlapped pyra­
mids. 51. 52. In particular, Pietikainen and Rosenfeld51 address the segmentation 
problem by initially decomposing the image into 8 x 8 squares of pixels. Such 
squares are characterized with one of the many textural features computed on 
the gray -level cooccurrence matrix. In this case they use the "contrast," that 
is, the moment of inertia of the cooccurrence matrix along its main diagonal. 
This choice is only one of the many possible, and it is immaterial to the struc­
ture of the algorithm. Such attributed 8 x 8 patches are then smoothed with a 
median filter and used to build an overlapped, unweighted pyramid with 4 x 4 
support. The segmentation is obtained by a forced linking process, where each 
cell in the pyramid chooses one among its four candidate parents. In this algo­
rithm, however, the choice was constrained within only two possible parents, 
to produce a segmentation in at most two regions. An improved technique 
consists of first performing a rough image segmentation. An average pyramid 
is linked in top-down mode according to gray-level similarity. The segmenta­
tion in the base is the starting point for the upward texture linking. The authors 
report better performance with respect to the straight bottom-up linking pro-



www.manaraa.com

Pyramidal Tools and Applications 307 

cess, and argue that global infonnation is essential in the process of texture 
characterization. 

Kjell and Dyer'3. 54 instead follow a method predominately based on 
higher-level tokens both for texture analysis and for texture segmentation. They 
characterize texture as the grouping of elongated edge segments. To begin dis­
crimination of differently textured image regions, they compute "texture sepa­
ration maps," that is, histograms of local distributions of oriented edge seg­
ments. Such histograms are edge centered, and the intrinsic image which is 
input to the actual segmentation process has one such histogram at each pixel 
belonging to an edge segment. After a smoothing step (a Gaussian filtering in 
this intrinsic image), they perfonn a bottom-up pyramid forced linking process. 
The linking is executed on averaged local histograms, and the most similar 
parent node is the one with the smallest average distance computed on the 
properties in the histograms. Since the image is supposed to contain two re­
gions at the most, the forced linking is restricted to two possible parents. 

Other approaches to texture characterization in multiresolution use models 
different from the dual spatial-gray-level distribution we have just considered. 
The mathematical notion of fractal-a shape that is self-similar at all scales­
introduces a number of invariance properties that, although only approximate in 
nonfractal objects, nevertheless can be used to characterize texture. A "fractal 
signature" for texture was introduced by Peleg et al. 55 It is based on the 
measurement of the area of the gray-level surface at different scales of analy­
sis as suggested by Mandelbrot. 56 This parameter was shown to be extremely 
efficient for texture segmentation. The method applies multiresolution only 
when approximating the different fractal scales at which the signature is 
computed. 

A statistical model for texture is applied by Bouman and Liu.57 In their 
method, regions with different statistical properties are outlined in a top-down 
segmentation process. Texture is modeled as a Gaussian autoregressive field. 
The hierarchical structure of a nonoverlapped quad pyramid is exploited to 
guide the segmentation process. At each level of analysis, image classification 
is approached as a statistical estimation problem. The results of classification 
at one level are used as the starting condition for the classification step at the 
level below, where they are replicated in each 2 x 2 block according to the 
quad-tree topology. The method is efficient because the constraints to the clas­
sification process propagate quickly at coarse level. Its relationship to multigrid 
techniques32 is quite evident. The authors maintain that the multiresolution ap­
proach, in this case, not only decreases computations (a result analogous to 
that of multigrid methods) but also improves segmentation quality. 



www.manaraa.com

308 Chapter 10 

10.4.2.5. General Assessment of Segmentation Techniques 

A critical analysis of pyramid segmentation algorithms was carried out by 
Bister et al. 58 They addressed the robustness of such algorithms with respect to 
shift, rotation, and scaling of the input image, and show, through a thorough 
set of experiments, that the majority of algorithms is indeed variant to these 
transformations. The reason for this sensitivity lies with the subsampling opera­
tion which is central to all pyramid construction algorithms. While any single 
image can be safely handled by a properly tuned segmentation scheme, no 
scheme is able to correctly process even slightly changed copies of the original 
image. An especially critical case is that of elongated objects. When analyzed 
in the spatial frequency domain, such objects exhibit two fundamental sets of 
frequency components, one along the transversal section (width, associated 
with higher frequencies), the other along the longitudinal section (length, asso­
ciated with lower frequencies). The pyramid structure itself considerably tapers 
off the higher components; this is even truer when Gaussian convolutions are 
used in the pyramid-building process. 

The analysis of pyramid segmentation algorithms has highlighted the al­
ready cited higher robustness of schemes based on stochastic pyramids. All the 
same, the irregular structure of such pyramids prevents a fair comparison of 
segmentation results, since the stochastic linking process produces quite differ­
ent pyramids out of slightly changed input images. 

10.4.3. General Matching 

The advantages of hierarchical multiresolution in coarse-to-fine search 
strategies were discussed in Chapter 2, particularly Section 2.3.3. The features 
looked for are first searched at a coarse resolution: successive refinements limit 
the search space, by consistently guiding the process where there is enough 
evidence of a good match, and increase the precision of localization with ad­
justments of the initial guess. 

Many algorithms have been implemented according to this strategy. DyerS 
categorizes them on the basis of the use of the refinement strategy which can 
be applied to a single image, in a general template-matching algorithm, or to 
couples of images for solving many types of common correspondence problems 
(e.g., stereo and motion). 

We briefly describe one algorithm among the many possible, with the sole 
purpose of highlighting the strategy common to all of them. It is the classical 
template-matching problem that has been addressed by many authors in the 
early period of multiresolution research activity. 59--62 



www.manaraa.com

Pyramidal Tools and Applications 309 

Tanimot061 analyzes the possible strategies for implementing a template­
matching operation on the pyramid. Basically, he uses a quad pyramid to apply 
variations of a recursive descent policy. The correlation-matching operation, on 
a small template window, produces approximate results in a coarse resolution 
image. When a sufficient match is found at a cell in the coarse level, the 
procedure calls itself recursively to examine the descendents of this cell. The 
simplest descent policy follows the quad-tree structure, by examining in tum 
the four descendents of each node, until a predefined number of levels has been 
examined or the base of the pyramid is reached. In descending the pyramid, 
successive figures of merit of the matching are appended together. If a given 
path through the quad tree does not produce a good result, the procedure back­
tracks and examines another path. Tanimoto studies alternatives to this "all-of­
four" descent policy. He proposes an "all-of-sixteen" strategy in order to 
broaden the search and to diminish false negative detection (note that the over­
lapping introduced in this case is only the partial superposition of search areas; 
it is not related to the averaged overlapped pyramid construction used in seg­
mentation by linking) and "best-of-four" and "best-of-sixteen" strategies to 
avoid backtracking and to limit the search at each new level by choosing the 
single child where the correlation match is highest. Other parameters consid­
ered are the choice of the threshold that discriminates between good and bad 
matches: it can be fixed throughout the levels of the pyramid or decrease with 
each level. The analysis of results shows that the use of an overlapped 4 x 4 
support in the "best-of-sixteen" recursive descent allows us to reliably locate 
all true good matches at high resolution. However, it is not optimal from the 
computational point of view because a cell can belong to more paths that tra­
verse the pyramid downward, because of the overlapping 4 x 4 support. 

10.4.4. Lines, Curves, and Shapes: Description and Recognition 

The hierarchical structure of the pyramid has been used for studying 
shapes by mainly following two approaches. In the structural descriptions of a 
shape the hierarchy helps in aggregating consensus during a form of "election" 
or "voting" process: roughly the same detection is carried out on each level of 
the pyramid, but on a more compact intermediate representation of the shape. 
Alternatively, the multiresolution capability of the pyramid is used to built vari­
ous versions of the shape, and the emphasis is more on regularizing the outline 
of the curve rather than on explicitly detecting the curve against a noisy back­
ground. 

We shall give a short summary of the algorithms proposed for shape detec-



www.manaraa.com

310 Chapter 10 

tion (starting from lines) and for shape, with a brief hint regarding the concept 
of "hierarchical symmetry." 

1 0.4.4.1. Lines 

Detecting lines is a very important and much-studied problem. One of the 
most common techniques is the Hough transform,63 which is a structural way 
of characterizing lines and shapes analytically. Shapes whose model is not 
given in analytical form, e.g., it is given by points (templates), can be analyzed 
through the generalized version of this transform.64 

Shapes characterized by analytical models are detected starting from the 
pixels of the image through a voting process, whereby each point in the image 
chooses the possible values of the parametric representation of shape for which 
it is compatible. In the case of lines represented by the couple (p,(J) , e.g., 
distance from the origin and its orientation with respect to the x axis, a point 
(xp'Yp) votes for all (p,(J) in which xp cos((J)+yP sin((J)=p. The set of values 
for the parameters is the "parameter space." The required quantization of the 
parameters usually makes this space rather large, and this is one of the imple­
mentation complexities of the method. 

A hierarchical approach to the Hough transform by Li et al. 65 addresses 
exactly this problem. The method is not specific to the pyramid architecture 
but is hierarchical in nature, because it uses a hierarchical representation of the 
parameter space. It consists of allocating space dynamically where the voting 
process is stronger, without explicitly representing all possible values of the 
parameters. The quantization is variable and adjustable to the situation. The 
approach is interesting, but only covers the detection of a single line. 

A pyramid Hough transform for lines was proposed by many authors. 
Tanimoto's algorithm66 aims not so much at the construction of the parameter 
space, with peaks identifying straight lines, but explicitly detects all instances 
of straight lines in their parametric representation (p, (J) by using a hierarchical 
"election strategy." This strategy builds evidence of the instances by merging, 
at decreasing resolution, those contributions from the hierarchical neighborhood 
that are likely to correspond to the same line. To do so, it uses a similarity 
measure based on the differences of the p's and (J's. A sketch of the algo­
rithm follows. 

The base of the pyramid is supposed to be large enough to store the whole 
image in the n x n mesh. The parameter space is not explicitly mapped any­
where in the pyramid, since the algorithm only produces a list of m couples (p, 
(J) representing the m most evident instances of leins in the base. The computa­
tion carried out on the pyramid proceeds bottom-up, starting from the base, 



www.manaraa.com

Pyramidal Tools and Applications 311 

and consists of two phases. The former only involves the base of the pyramid, 
the latter uses the upper layers to merge evidence of the lines. 

In the first phase, the image is processed with an edge detector operator, 
and each pixel is assigned a feature vector (0, y) describing the orientation ° 
and the strength y of the edge across it. Then the hypothesized line in the base 
(level L) with direction ° passing through pixel (i, j, L) is identified with its 
distance p from the origin of the coordinate system on the base mesh. The local 
evidence for such a straight line is represented by the vector (0, p, y). 

The second phase merges local evidence for lines into clusters of roughly 
"similar" contributions. The similarity function measures the distance between 
contributions p and q by weighting the absolute differences Op - Oq and Pp - Pq. 
The four clusters associated with the children of pixel (i, j, I) are compared 
and merged if they stay within a chosen distance from one another. Then only 
the first m contributions (0, p, y) are retained and the others are discarded. 
This merging process is repeated at each new level until the apex is reached; 
the m contributions that have survived are the sought for m straight lines. 

A very similar "election" strategy is followed by lolion and Rosenfeld.67 

Collinear straight segments close to each other are merged together and ranked 
on the basis of their length. 

The method of Princen et al. 68 adopts an overlapped pyramid. The image 
is subdivided into overlapping sub squares , and a preliminary Hough voting 
process is executed within each subsquare. Since the subsquare are much 
smaller than the whole image, the quantization of the parameters is low and 
the voting process quicker. The hierarchy is used to group local evidence of 
short line segments into the more global evidence of larger ones. The grouping 
is itself a Hough voting process; each segment on a level votes for a possible 
line orientation in the subsquare of the parent. The higher the level, the finer 
the quantization, because a subsquare in higher levels maps a larger region of 
the image in the base. If the grouping at a given level is not sufficiently strong, 
the process stops. The overall result is spread out in the levels of the pyramid: 
short segments are detected in the lower levels, the few long segments in the 
higher ones. The algorithm thus consists of the true multiresolution matching 
process. 

Another way of using the pyramid structure to solve this problem is pro­
posed by Bongiovanni et al.69 It also starts with a "block computation" phase, 
similar to the previous one, even if executed on disjoint subsquares. But it can 
also be classified in the larger category of divide-and-conquer algorithms. The 
combination of the partial results of the sub squares is carried out using the 
specialized pyramid move operations of Miller and Stout,1O essentially to con­
centrate the partial results in the midlevel of the pyramid. The aggregated accu-



www.manaraa.com

312 Chapter 10 

mulator is reconstructed in the base by using the "funnel read" pyramid oper­
ation. 

10.4.4.2. Curves 

The multiresolution representation of curves is a very important tool in 
many applications, notably in geographic information systems. It was therefore 
intensively studied in variable-resolution hierarchical structures, such as quad 
trees. For an exhaustive review, see Samet. 70, 71 In what follows, we keep the 
discussion within the pyramid representation, whereby the resolution changes 
with each level but is uniform within each successive level. 

A first type of representation mainly addresses the topology of the digi­
tized curve, as available when the curve is approximated in a tessellated plane. 
Kropatsch72 introduces a set of rules to code a curve on the "dual pyramid" 
(see Section 10.2). These rules are a grammar that establishes how a curve 
fragment can cross a texel in the plane. By using square tessellations rotated 
by 45° at each other level, Kropatsch builds a hierarchical grammar, which 
represents the curve at multiple resolution as words in the alphabet of the termi­
nal symbols of the grammar. The resulting representation shrinks the curve at 
successive levels and can be used to regularize the curves and filter out sets of 
small discontinuous fragments. 73 

The approximation of curves in multiresolution was addressed on a mo­
nodimensional version of the overlapped pyramid by Narayanan and Rosen­
feld. 74 The computed approximation consists of a piecewise interpolation built 
on consecutive groups of four points. Such groups overlap by 50% so that the 
level of the hierarchy decreases by a factor of 2 at each level. Furthermore, 
because of the overlapping, each segment can be linked, at the most, to two 
parent segments in the level above. The linking strategy is unforced: a segment 
chooses its parent on the basis of the mean-square error (MSE) between the 
segment approximations. If the MSE is above a chosen threshold, no link is 
established. After the linking process, the approximations are recomputed at 
all levels (as in all algorithms that use linking-driven segmentation), using 
only the subsegments that are currently linked to a parent to obtain the new 
approximation at each coarser level. Admittedly, the multiresolution represen­
tation of the curve is a noncontinuous polygonal approximation of the wave­
form. 

A peculiar type of curve pyramid was introduced by Meer et al. 21 It is 
called the "chain pyramid" to highlight the fact that it requires as input a 



www.manaraa.com

Pyramidal Tools and Applications 313 

bidimensional digitized curve that allows a chain-code representation.75 The 
requirement for a digitized curve to be chain codable is that any pixel belonging 
to the curve has at most two neighboring pixels in the usual 8-connected square 
tessellation of the plane. The chain pyramid consists of a multiresolution dou­
bled-linked data structure which describes the connectivity of the curve in terms 
of pointers to adjacent pixels. The construction of such a multiscale curve is 
based on the 2 x 2 nonoverlapped pyramid. Pixels in the base belonging to the 
curve are classified as normal (labeled with 1) and siblingless (labeled with 0). 
A pixel is siblingless if it is the only one belonging to the curve in the 2 x 2 
subsquare of the plane where it is located. A fundamental property of the chain­
codable curve is that the quad-pyramid approximation preserves continuity in 
the coarse level even if the fine level consists of a string of siblingless pixels. 
This property is very important in reducing the height of the multi scale curve: 
indeed, a winding curve that crosses the midline of the finest resolution plane 
at every other pixel provokes the use of all resolution levels. Meer et al. elimi­
nate the sequences of siblingless pixels by applying a stochastic election pro­
cess to halve them (see Section 10.2). The use of the stochastic algorithm, 
which was shown to converge very rapidly, is required to obtain a decimation 
which is independent of any knowledge of the location of the curve in the 
digitized plane. The overall algorithm is shift invariant. 

The chain pyramid was used successfully for contour smoothing. The pro­
cess consists of computing, at each coarser level, the centroids of finer-resolu­
tion line segments that are within the "receptive field" of a parent. The 
smoothed contour is the polygonal line of the centroids. The key point in the 
algorithm is the improved smoothing that results from the stochastic elimination 
of sibling less pixels, which introduce local irregularities which propagate 
through all levels of the representation. An enhanced chain pyramid (built with 
a 4 X 4 overlapped pyramid) was used to extract trends and significant extrema 
of curves.76 Trends are the sketches of a curve at a coarse representation. 

Gaussian blurred pyramids built on noncontiguous sequences of dots, or 
dot-line image patches, offer a computational model of the perceptual phenom­
enon that allows humans to perceive such configurations as curves.77 The sur­
faces that result from the blurred Gaussian convolution at multiple levels are 
analyzed for ridges and peaks. A set of connected local maxima is the support 
of the perceived curve. The rich set of such maxima must be processed in order 
to prune the multiple paths. The use of multiple-resolution Gaussian blurring 
guarantees that the number of local maxima decreases when the resolution de­
creases, this being a property of the Laplacian edge detector (see Section 2.4.3 
for details). 



www.manaraa.com

314 Chapter 10 

10.4.4.3. Shapes 

A generalization of the problem of describing curves is that of describing 
shapes in general. Much interest has been devoted recently to shape; an up-to­
date summary is available in Arcelli et al. 78 

The most promising approaches seem to be those that consistently apply 
multiresolution techniques. The rationale for this tendency is that most shapes 
are too rich in salient features (comers, points of high curvature, parallelism, 
symmetries) to be economically described at a single resolution. Moreover, as 
shown in Section 2.2.1, a multiresolution shape representation may be very 
effective in object recognition. In fact, suitable models and descriptions in 
multiresolution may be used as guidelines for emulating the focus-of-attention 
paradigm typical of human vision. 

A very effective means of obtaining the description of curvature in a shape 
on a fine-grained massively parallel pyramidal structure was proposed by Can­
toni and Levialdi. 79 The process of heat diffusion was applied to a multiscale 
version of the shape, which is assumed to be immersed in an adiabatic system. 
A uniform heat impulse is associated with the shape boundary at all levels. 
Few iterations of the diffusion process leave a different "temperature" on each 
boundary point. This temperature is directly related to .curvature, because high­
curvature points offer a narrower area for the heat to flow in. 

Multiscale polynomial approximation of curves have an analytic founda­
tion that allows us to compute various geometric properties that are invariant 
through the resolutions. 8o Comers, straight and curved arcs with signed curva­
ture, and position of inflection points are some of these properties. 

An explicit multiresolution definition of symmetry was recently proposed 
by Zabrodsky et al. 81 on the basis of a "continuous symmetry measure." The 
multiresolution scheme helps in obtaining an initial approximation of axial 
symmetry. The main application is recognition of faces. 

The generalized version of the Hough transform was used on the pyramid 
for shape recognition. 82, 83 In this case, the model of the shape is described by 
many voting rules, with each one associated with a given level of representa­
tion. The salient features of the shape behave like edge points in the line detec­
tion problem and are used to identify subparts of the shape at a given resolu­
tion. These subparts become the voting tokens at the next highest level in the 
pyramid. The pyramid implements a pipelined recognition process by executing 
the voting processes starting from the base and moving the accumulated evi­
dence upward. 

A popular set of features used for shape description and recognition is the 



www.manaraa.com

Pyramidal Tools and Applications 315 

complete moment set. The moment of a continuous functionf(x, y) of order n, 
where n = p + q, is defined as84 

Mp , q = J J xPy'lj(x,y) dx dy, p, q=0,1,2, ... (10.1) 

When used to represent a segment of an image, f(x, y) is the image function 
in the segment region and is assumed to be zero outside the region. With re­
spect to the original pixel domain, a small, fixed number of operations are 
required in the moments domain to perform transformations such as translation, 
scale change, and rotation. A complete moment set (eMS) of order n contains 
all moment of order n and lower. It has been shown by Reeves and Rostam­
pOU~5 that a eMS is closed with respect to the above transformations in the 2-
D plane. A set of standard moments has been defined which normalizes the 
eMS with reference to shape, size, position, and orientation. 

The multiresolution environment is particularly suitable for eMS computa­
tion: a window-centered moment of order n on a level k is easily computed on 
the basis of a simple combination of window-centered moments of order n and 
lower orders in level k-l :86 

(10.2) 

The definition is given in one dimension to simplify notation, and 'tV is a mo­
ment-generating kernel which combines a moment arm with the standard 
Gaussian-generating kernel w introduced in Section 2.4.2. Equation (10.2) can 
be applied recursively: in this fine-to-coarse implementation cumbersome com­
putations within wide windows are performed by iterating combinations of sim­
pler primitives applied to smaller windows. 

10.4.5. Image Compression, Coding, and Transmission 

The tapering nature of pyramids was recognized long ago as a basis for 
decreasing the cost of image transmission.87 Intuitively, the coarse representa­
tion of intensity pyramids can be considered a "compressed" version of the 
image. 

Obviously, in the field of compression, two main approaches are possible. 



www.manaraa.com

316 Chapter 10 

Lossless compression requires a complete representation; lossy compression 
can relax some constraints and use more pragmatic tools. In Chapter 2 we 
analyzed the properties of many multiresolution representations. The wavelet 
representation is the basis for a complete and nonredundant coding scheme. As 
described, it is intrinsically hierarchical and originated many algorithms that 
couple the pyramid structure with efficient coding schemes. The detail signals 
of coarser resolution levels are quantized differently with respect to finer ones, 
both to obtain a compressed signal and to match physiological evidence of the 
perceptual sensitivity of the human visual system. 

Along the same lines is the fundamental work of Burt and Adelson,88 
which is based on the redundant, though complete, Laplacian pyramid. Ex­
tremely efficient lossy schemes based on various orthogonal pyramid structures 
were proposed by Adelson et al. 89 Moreover, the very simple Haar transform 
can lead to significant compression in the special case of robotic scenes.90 At­
tempts to base the compression on special pyramid structures are reported by 
Mayer and Kropatsch.91 , 92 Even though the dual pyramid with 3 X 3 support 
has twice as many levels as the 5 x 5 Laplacian pyramid of Burt, good com­
pression ratios of up to 1 :20 were obtained. 

10.4.6. Motion Analysis 

The analysis of motion is a complex task that involves many levels of 
processing and is motivated by quite practical problems, such as automatic 
surveillance and navigation. The need to obtain real-time estimates of object 
motion in a scene demands effective computation strategies to reduce the enor­
mous amount of data produced by the transducer. 

Multiresolution approaches to motion analysis primarily address this issue. 
By building a properly tuned set of reduced-resolution images for each incom­
ing scene, they carry out the required computation at the most convenient reso­
lution and refine coarse approximations only where necessary. This approach 
is quite general but becomes the only possible one when the analysis has to 
take into account ego motion (a moving camera observing a scene with moving 
objects) and tracking of specific objects. Section 2.1.2 describes the physiologi­
cal evidence of the behavior of the human vision system with regard to this 
type of processing. Later we describe an approach to ego motion and tracking 
that closely resembles the human vision system operation. 

In the remainder of this section we review the main results involving 
multiresolution motion analysis, starting from the low-level phase of optical 



www.manaraa.com

Pyramidal Tools and Applications 317 

flow computation and proceeding upward to object tracking. Before going 
through the various proposals, we briefly summarize the most relevant defini­
tions and physical properties of motion estimation. 

10.4.6.1. Preliminary Definitions 

We can define image flow field and optic flow field, according to Singh,93 
as follows: the image flow field is the bidimensional projection onto the points 
of the imaging surface of the three-dimensional instantaneous velocities of the 
corresponding points in the scene, whereas the optic flow field is the "2D 
distribution of apparent velocities that can be associated with the variation of 
brightness patterns on the image." It is obvious the second one is measured in 
a sequence of images. Furthermore, the two flows do not coincide in the most 
general case: if the scene is static and the light source is moving, the image 
flow is null, while the optic flow is not. 

The conditions under which the two flows can be assumed to be equal 
have been widely investigated (for a detailed analysis, see Singh93 and Verri 
and Poggi094). Basically, they involve lambertian surfaces moving in a purely 
translational motion under an illumination that is spatiotemporally uniform. Un­
der these assumptions, it can be shown that the normal components of image 
flow and optic flow (that is, the components along the image gradient) are 
roughly equal at those points of the image where the gradient is sufficiently 
strong. This is a definite source of uncertainty in motion estimation, yet not the 
only one. 

Indeed, since the majority of techniques for optic flow estimation are 
based on a local analysis carried out on image pixels, the aperture problem 
arises. It consists of the fact that it is possible to compute only the component 
of optic flow normal to the underlying contour, whereas the tangential one 
cannot be recovered unless the small area used for the computation contains a 
reach feature, such as a comer or a textured region. To overcome this problem, 
various types of "constraints" have been introduced: they involve either 
smoothness constraints, which try to enforce a "good continuation" on the 
approximate solution, or neighborhood analysis. It is beyond the scope of this 
book to discuss them, and the reader is referred to Singh93 for a bibliography 
on the subject. 

The estimation of optic flow has been traditionally addressed as a "gener­
alized matching" between two consecutive images. To derive the local veloci­
ties at each point in image I(t), this image is made to correspond to the succes-



www.manaraa.com

318 Chapter 10 

sive image I(t+ f:.t) in a pointwise way. The displacements of corresponding 
point couples are used to derive the local velocities by using the interframe 
latency dt. The basic assumption for this analysis is that the velocities in the 
scene can be recovered with enough precision despite their possibly different 
magnitudes. With respect to this issue, multiresolution techniques exhibit their 
best possibilities: rapidly moving objects can be safely tracked at low resolu­
tion, since the required precision on the associated velocities is usually much 
smaller than that of a slowly moving object. These, in tum, can be tracked 
accurately at high resolution, because the "displacements" of corresponding 
points are rather small and can be identified through coarse-to-fine strategies, 
which substantially reduce the complexity of the search (see Sections 2.3 and 
2.5 and the Section on matching in this chapter). 

In the contest of multiresolution, the generalized matching procedure be­
tween two consecutive images has been traditionally solved through gradient­
based, correlation-based, and spatiotemporal approaches. Only the first two 
have been explicitly addressed in a multiresolution environment, and are briefly 
described in the following section. The spatiotemporal approach, pioneered by 
Adelson and Bergen,95 is somewhat related to a unifying proposal by Anan­
dan96 and will be touched upon in that context. 

10.4.6.2. Optical Flow through Image Gradient 

The image-gradient approach to optic flow estimation is based on the 
brightness constancy assumption.97 A point P in the scene projects onto the 
imaging surface at location (x, y) at time t and intensity value I(x, y, t) equal 
to the projected intensity I(x+ Bx, y + By, t+ 8t) at the corresponding point on 
the following image. By denoting by u and v the optical flow components dx/ 
dt and dy/dt and by Ix, Iy , and It the variations in space and in time of the 
intensity, the above-mentioned constancy constraints translates to the follow­
ing equation: 

(10.3) 

As anticipated in the discussion on the aperture problem, this single equa­
tion in u and v leaves the problem underconstrained. Indeed, only the normal 
component Va of the optical flow can be computed through the gradient magni­
tude G = v'I2 + I 2as x y 



www.manaraa.com

Pyramidal Tools and Applications 

-It 
v=---

n Y/2 +/2 
x y 

319 

(10.4) 

Various approaches have been proposed to overcome this problem. The 
majority of them consist of introducing a "regularization constraint," such as 
"smoothness of flow-field" according to Hom and Schunck,97 or "oriented 
smoothness," according to Nagel98 (who also takes into account second-order 
derivatives in formulating the differential equation for the brightness constancy 
criterion). The determination of optical flow is thus reformulated as the minimi­
zation of an appropriate functional giving a solution that is as faithful as possi­
ble to the brightness constancy criterion, while obeying the regularization con­
straint. The usual Euler-Lagrange equations are employed to minimize the 
functional, and a discrete version of the continuous problem is derived. The 
solution is then found using a Gauss-Seidel relaxation scheme for the large 
and sparse linear system of equations. 

We are interested in those approaches to this method that embed a multi­
resolution scheme. As anticipated in Section 10.4.1, the multilevel relaxation 
scheme is a very general technique and has been applied to optical flow deter­
mination as a main case. Experiments are reported by Glazer,28 Terzopoulos,32 
and Enkelmann.99 The first two adopt the standard multigrid construction de­
scribed in Section 10.4.1, relying on interpolation for coarse-to-fine data trans­
fers and on subsampling for fine-to-coarse reductions. Enkelmann added to this 
approach the preliminary construction of Gaussian pyramids on the two image 
frames. Variations on the control strategy of the relaxation scheme have been 
exploited to speed up convergence at the finest level. 

It turns out that this approach produces fast good solutions to the optical 
flow problem when the scene contains a single moving object, while it fails in 
more complex motion patterns. The difficulty was ascribed by Battiti et al. 100 

to the conflicting situation of multiple, different motion frequencies that are 
blurred by the bidirectional information flow of the multigrid relaxation proce­
dure. Good local approximations at a given level can be unduly modified by 
updates introduced by the upward (downward) propagation of partial solutions 
at neighboring levels. 

A proposed alternative100 involves an adaptive, error-based multiscale 
scheme. A local measurement of the maximum expected error is used to control 
the hierarchical flow of data. In a coarse-to-fine manner, the multigrid relax­
ation process is executed only at those grid locations where the local error 
is still above a chosen threshold. The remaining locations, where the rough 
approximation is already good, are "masked off" along with their siblings. 



www.manaraa.com

320 Chapter 10 

The following relaxation iterations cannot alter the masked locations, which 
retain their value. The end effect of this method produces optical flow in a 
hierarchy of grids. An effective implementation of this solution can exploit the 
locally refined block structured grids introduced by Gannon. 33 

10.4.6.3. Optical Flow through Image Correlation and Matching 

Gradient-based methods rely on the principle of pointwise intensity con­
servation. Instead, the determination of optical flow through image correlation 
and higher-level token matching tries to enforce the conservation of local distri­
bution of intensity. 93 A pixel in the first image frame is matched to the best 
corresponding candidate pixel in the second frame on the basis of a measure of 
similarity computed on an extended neighborhood. The set of couples of 
matching pixels defines the interframe displacement vector field and the re­
sulting optical flow. Multiresolution helps both in the matching process and in 
tuning the resolution to the proper velocities in the scene. 

A multichannel approach suitable for a pipelined implementation has been 
proposed by Burt et al. 101 After constructing Laplacian pyramids on the two 
image frames, a set of up to 25 directional correlations is carried out indepen­
dently at all resolutions. The term motion channel identifies one such correla­
tion. Since the magnitude of velocities can vary significantly within a scene, 
the directional channels will respond differently according to resolution, and 
multiple "tuned" channels will be detected at different resolutions. Linear 
combinations of channel outputs lead to the actual velocities. Burt introduces 
criteria to measure the confidence of velocity estimates and to detect those 
situations that give rise to the aperture problem (lack of local contrast). This 
approach can be effectively implemented on the "segmented pipeline" archi­
tecture!02 (see Chapter 6 for more details). It hosts the continuous "flow­
through" of image data in the stages of the pipeline. 

A refined version!03 of the same method enhances the correlation-matching 
phase as follows. A single level is chosen in the Laplacian pyramids, such that 
the "sample distance is only slightly larger than the largest residual motion 
displacement between frames." With this choice, the correlation-matching pro­
cess requires directional channels with unit displacements. The actual correla­
tion match is executed by first building an integration Gaussian pyramid on the 
nine resulting channels. By choosing a level in these Gaussian pyramids, the 
cross-correlation function at each point is assembled as the 3 x 3 array of values 
from the nine Gaussian pyramids and the local velocity is obtained as the extre­
mum of the surface that best fits the 3 x 3 array of correlation values. Consis-



www.manaraa.com

Pyramidal Tools and Applications 321 

tent use of pipeline architecture is possible in this enhanced method. No bottle­
neck is introduced in the pipeline, since the combination of channel outputs 
exploits the same pipelined approach as the first phases of the computation. 

Other matching approaches involve a unidirectional coarse-to-fine refine­
ment process. This was applied by Anandan and WeisslO4 along with a match 
criterion based on a Gaussian-weighted sum-of-squared-difference scheme. A 
confidence measure is used to sort out the multiple possible solutions to the 
match, and the measure takes into account local evidence of directional infor­
mation. 

The "elastic matching," a procedure introduced by Bajcsy et al.105 as a 
general tool in image correspondence, was applied by Dengler lO6 to the optical 
flow problem. The equations that describe the deformation of an elastic mem­
brane under external forces are reinterpreted to yield the displacement field 
constraints between two successive images. Local cross-correlations of the sign 
of the Laplacian operator in the two image frames are used in the motion case 
to derive the analogues of the "external forces." Dengler also addresses the 
aperture problem and the unisotropy in the expected displacement field that is 
not captured by the straight formulation as elastic matching (this is to be com­
pared with the observation of Burt that multiple different velocities are best 
detected by "tuned motion channels"). The second problem is overcome 
through the use of the zero crossings of the Laplacian: the expected displace­
ment field is segmented into homogeneous regions delimited by such zero 
crossings, and the solution is subject to this additional regional constraint. This 
method is indeed quite similar to the variational principle underlying gradient­
based approaches, since it produces a system of linear equations to be solved. 
Dengler sketches a multiresolution approach that builds a three-level Laplacian 
pyramid and then applies a coarse-to-fine refinement procedure, analogous to 
the multiresolution relaxation method already described. 

Matching has been applied to the motion detection problem at a higher 
level than the straightforward computation of optical flow. A hierarchy of im­
age features (surfaces, surface edges, vertices, and lines) to implement a top­
down matching strategy were proposed by Venkateswar and Chellappa. 107 The 
idea is to derive motion estimation first at the coarse level of surfaces and then 
to proceed to finer estimates by using the rest of the hierarchy. The scheme is 
essentially a graph-matching procedure, guided by various matching constraints 
(disparity in intensity, area and length, orientation, ordering, as well as other 
topological constraints). The end effect of the procedure is a set of trajectories 
of vertices. 

Another form of high-level matching is proposed by Grosky and Jain.I08 
They consider the image intensity as a surface and proceed to match surface 



www.manaraa.com

322 Chapter 10 

regions in successive frames through a model-based approach. The multiresolu­
tion helps in segmenting regions to be matched (the pyramid linking scheme is 
used in this case; see Section 10.4.2.1 for details). The candidate regions are 
fitted to an elliptic paraboloid, and the parameters of the best fit are derived in 
the pyramid structure during the segmentation process. Once corresponding re­
gions are detected, their analytical surface representation allows easy computa­
tion of rotational as well as of translational components of the underlying 
motion. 

A unified approach to optical flow estimation was introduced by Anan­
dan.96 He reviewed the main hierarchical methods outlined above and showed 
that gradient-based techniques and his own correlation matching scheme104 con­
verge into a unique method, provided that the interframe time interval tends to 
zero and that third- and higher-order spatial derivatives are ignored. Then he 
extends the hierarchical matching approach by including selective filters tuned 
to different spatial frequencies, image locations, orientation and single motion 
direction. Each such filter, which actually extends the notion of motion channel 
introduced by Burt, is a "tuned" motion detector, compatible with all ap­
proaches to optical flow estimation, including the spatiotemporal one. 

10.4.6.4. Ego Motion and Tracking 

The determination of the dense flow field associated with optical flow is 
only a single step in procedures such as tracking moving objects for surveil­
lance tasks or road-border following for automated navigation. The flow-field 
analysis is the input to more global estimates of motion, which include the 
detection of moving surfaces while taking into account the relative motion of 
the camera with respect to a scene. 

A comprehensive proposal for the tracking problem by Burt et al.103 mod­
els the dynamic motion analysis carried out with a moving camera for tracking 
multiple moving objects as a three-stage, coordinated process. The local analy­
sis consists of the determination of optical flow from two successive image 
frames, using the approach already described. The highest level of analysis is 
the global description of segmented, coherently moving surfaces. The interme­
diate-level implements the "foveal" analysis. This is carried out on a regional 
basis and consists of deriving a coherent motion description of a single planar 
surface within the chosen region. The region of analysis, however, is changed 
dynamically, possibly from frame to frame, to suit the tracking task. Burt 
names this sequence of regional analysis a "focal probe." The multiresolution 
approach is applied in the focal analysis as well, because the dimension of the 



www.manaraa.com

Pyramidal Tools and Applications 323 

region and the sample density within the regions are adjusted to produce a 
roughly constant processing load. 

The key idea in the Burt proposal is the tracking scheme that allows us to 
quickly detect and segment the surface in the region and which serves to solve 
the ego-motion problem-the delineation of motion due to the moving camera. 
Tracking is accomplished in multiresolution. At a coarse level, the local flow 
vectors are fitted to the preliminary rough coherent motion due to a single 
surface. The parameters of this estimated surface motion are used to "warp" 
the first image frame with respect to the second, thus effectively reducing the 
residual displacement. A subsequent local analysis at a higher resolution up­
dates the estimate, and a sequence of such tracking-by-warping steps yields the 
final motion parameters. This process carries out the analysis of motion to­
gether with a segmentation of the region on a single surface against the back­
ground. If different coherently moving surfaces are present in the scene, no 
good fit can be obtained, and the procedure requires splitting and refining the 
region. Thus, tracking is a single-surface-at-a-time process. Nevertheless, this 
tracking scheme can be readily applied to determine the ego motion of the 
camera by adopting a "majority-tracking" approach. Indeed, if the region con­
tains a single (or no) object in relative motion with respect to the scene and the 
camera (provided that the object is small with respect to region of analysis), 
the majority of the low-level flow-field vectors will be due to the motion of the 
camera with respect to the still scene. By executing the fitting and tracking 
procedure against these vectors, the motion of the camera can easily be com­
puted. The single moving object is then delineated by a second tracking step. 

The overall motion detection scheme is very well suited to cheap imple­
mentation on a mixed hardware platform, with dedicated devices for the low­
level phase (see the PVM system and/or the Sarnoff pyramid chip in Chapter 
6) and off-the-shelf microprocessors for the foveal probe and tracking steps. 

Another multiresolution approach to ego-motion determination is pursued 
by Hanna. 109 Instead of using the optical flow as an intermediate step, as in 
Burt's scheme, this approach directly relates the brightness constancy constraint 
to a global ego-motion constraint. Local brightness derivatives and an ego­
motion model are combined to match local planar surface evidence in the im­
age. The procedure starts from a chosen level in the Laplacian pyramid of the 
first image frame. The current coarse estimate of local surface and ego-motion 
parameters are used to warp the first image frame to the second one. The resid­
ual displacement is used to update through a number of iterations the ego­
motion estimates derived from the minimization of the global constraint (which 
takes into account both the brightness constancy criterion and the ego-motion 
planar surface model). Then, the current solution is projected onto the next 



www.manaraa.com

324 Chapter 10 

finer level in the pyramid, and this coarse-to-fine scheme is iterated down to 
the highest resolution. The algorithm reported here reliably determines ego mo­
tion in the absence of independently moving multiple objects in the scene. 
Since this algorithm uses a global approach, Burt's regional tracking method 
cannot be easily incorporated into it. 

10.4.7. Stereo Vision and Depth 

Recovering depth information from a scene is an important step in the 
3-D interpretation of the scene itself. Passive methods rely on mUltiple images, 
taken at different locations, to infer depth through stereo vision. Active meth­
ods use sonar and laser range finders to produce a direct measurement of dis­
tances from the active sensor. Alternatively, focusing can be used to substitute 
the emission of signals with a modification of the geometry of image formation 
in the camera. Multiresolution offers a viable approach both in passive and in 
active methods. We summarize a few sample algorithms representative of the 
application of a multiresolution strategy. 

10.4.7.1. Depth from Stereo 

Stereopsis in the human visual system and the corresponding computation 
in computer vision have been modeled through a combined approach: the mea­
sure of disparity in space (displacement in retinal position of matching features) 
along with a proper use of frequency channels (respectively, multiresolution 
representations) allows us to infer the distance in space of the features detected 
at the receptors by triangulation. The fundamental work on the subject by Marr 
and PoggiollO solves the correspondence problem by using zero crossings of 
the Laplacian of Gaussian filtered images as features to be matched. Multireso­
lution comes into the method through the use of mUltiple Gaussian convolution 
filters, each with a different standard deviation. 

The importance of multiresolution is highlighted explicitly by a result of 
Clark and Lawrence. II I In the context of Witkin's scale-space transform,39 they 
show that computing spatial disparity by matching zero crossings at a single 
resolution level leads to errors. Such errors are larger for coarser resolutions. 
Consequently, a coarse-to-fine procedure, which relies on zero crossing, is 
somewhat diminished in its capacity to focus toward more precise localizations, 
since it can start with an initial offsetting error. A further contribution of Clark 
and Lawrence is the foveal scale-space transform, which is a transformation of 
the Witkin method, leading to the reduction (and in some cases to the elimina­
tion) of disparity errors. The real drawback of such a method lies in its cost. 



www.manaraa.com

Pyramidal Tools and Applications 325 

The scale-space transform is a continuous function of the standard deviation of 
its Gaussian kernel. A reliable computation of this transform involves many 
more filterings of the input image than a straightforward multiresolution con­
struction, such as the Gaussian or the Laplacian pyramids. 

An analysis of the advantages of multiresolution in solving the matching 
problem through the epipolar constraint was carried out by Cantoni et al. 112 In 
matching points in a pair of images of the same scene, the epipolar constraint 
helps to reduce the search complexity from O(N2) to O(N), N being the linear 
dimension of the image. Moreover, let P be a point in the scene and PI its 
projection in a first image. If a rough estimate of the distance d of P is already 
available (i.e., dmin:S; d:s; dmax) , the search in the epipolar line in the second 
image for the corresponding point P 2 can be narrowed to a segment. However, 
if no estimate for d is available, or if the matching segment is a substantial part 
of the whole epipolar line, it is worth applying a multiresolution coarse-to-fine 
strategy to isolate the tie point P 2. 

Cantoni et al. built a pyramid (by straight subsampling) on each of the 
two image frames and estimated the cost of executing the correlation-matching 
procedure in top-down fashion. The use of a coarse version of the images 
speeds up the correlation phase. However, the top-down refinement (projecting, 
etc.) adds an overhead, which is proportional to the number of resolutions 
used. Since the coarsest level for the first approximate match itself depends on 
the rough estimate of the displacement, the overall cost of the procedure (as a 
function of the number of resolution levels) exhibits a minimum, located some­
where between two and four levels. If more levels are used, the gain due to 
the narrowed search at the coarser levels is canceled by the overhead of the re­
finements. 

10.4.7.2. Depth from Focus 

A pyramid algorithm for depth map reconstruction from a single view of 
a scene was proposed by Darell and Wohn.ll3 The basic idea of recovering 
depth information from focus is to exploit the intuitive notion of sharpness. A 
"properly" focused image appears sharp; that is, it preserves the high-fre­
quency content of the scene. On the contrary, a defocused image is blurred; it 
can thus be modeled as the convolution of the focused image with a low-pass 
filter, such as a Gaussian. 

If the scene contains a single object, it is possible to analyze the high­
frequency decades of the power spectrum of a set of images taken at various 
focal distances and to derive a function between the spectral components in 
those frequencies and the focal distance. Such a function shows a single peak 



www.manaraa.com

326 Chapter 10 

in correspondence with the "true" focal distance. This distance is uniquely 
related to the distance of the object by the usual optic equations. 

However, a scene usually contains a number of objects (or prominent fea­
tures) at different distances so that no single focus can be derived. Still, if the 
image can be segmented into regions each associated with a single dominant 
object, it is possible to apply the method to each region separately, thus creat­
ing a small depth map. 

Darell and Wohn introduce a "sharpness criterion" to perform this analy­
sis of the high-frequency band. The criterion is based on the integral of the 
convolution of the image with a bandpass filter, which enhances the high-fre­
quency components. They adopt the Laplacian pyramid representation, which 
is a bandpass transformation at multiple resolutions. To compute the integral, 
they further build a Gaussian pyramid on a single level k of the Laplacian 
pyramid. If this procedure is repeated many images over, with each taken at a 
different focusing distance, the resulting Gaussian pyramids generate a map of 
"sharpness" values at multiple resolutions. By choosing a proper integration 
level in the Gaussian pyramid, each pixel at level k in the Laplacian pyramid 
has a set of approximations of the power spectrum of the region of the input 
image that it represents. The maximum value within such a set shows the best 
focal distance for that region. The resolution of the depth map depends on the 
level k at which the integration is executed. 

This method was implemented on the PVM system described in Chapter 
6. The pipelined computation of the Laplacian and Gaussian pyramids can be 
executed in real time. The bottleneck in the procedure is the time required to 
adjust the camera lens to the new focus. 

10.5. CONCLUSIONS 

In this chapter we have analyzed the effectiveness of pyramidal systems 
in solving computer vision problems. We have considered basic algorithms, 
such as sorting, connected component labeling, histogramming, and more ad­
vanced ones, such as segmentation, object delineation, shape description and 
recognition, image compression and transmission, motion analysis, and 
tracking. 

This review has highlighted the computational complexity of the algo­
rithms, to show the gain due to the pyramid topology, and their suitability to 
the different architectural solutions: homogeneous hierarchies versus heteroge­
neous ones. The class of homogeneous pyramid has received more attention; 
this is due partly to the fact that compact and pipelined pyramids have been the 



www.manaraa.com

Pyramidal Tools and Applications 327 

first architectures proposed for embedding the multiresolution approach into a 
parallel systems, partly because they have been conceived as general purpose 
systems, while heterogeneous ones are more tailored to specific tasks. 

The number of algorithms designed for hierarchical systems or embedding 
a multiresolution approach is ever increasing. The rich set of alternative hierar­
chical systems offers a wide platform for successfully solving many relevant 
vision problems; so, it is easy to find a proper matching between the algorithms 
and the architectures. 

REFERENCES 

1. s. L. Tanimoto and A. Klinger (eds.), Structured Computer Vision: Machine Perception 
through Hierarchical Computation Structures, Academic Press, New York (1980). 

2. A. Rosenfeld, (ed.) Multiresolution Image Processing and Analysis, Springer-Verlag, Berlin 
(1984). 

3. V. Cantoni and S. Levialdi (eds.), Pyramidal Systems for Computer Vision, Springer-Verlag, 
Berlin (1986). 

4. L. Uhr (ed.), Parallel Computer Vision, Academic Press, Orlando, FL (1987). 
5. c. R. Dyer, Multiscale image understanding, in Parallel Computer Vision (L. Uhr, ed.), pp. 

171-213, Academic Press, Orlando, FL (1987). 
6. A. Rosenfeld, Image analysis and computer vision: 1991, CVGIP: Image Understanding 

55(3), 349-380 (1992). 
7. M. Ferretti, Overlapping in compact pyramids, in Pyramidal Systems for Computer Vision (V. 

Cantoni and S. Levialdi, eds.), pp. 247-259, Springer-Verlag, Berlin (1986). 
8. R. Miller and Q. F. Stout, Parallel Algorithms for Regular Architectures, MIT Press, Cam­

bridge, MA (1992). 
9. Q. F. Stout, Pyramid algorithms optimal for the worst case, in Parallel Computer Vision (L. 

Uhr, ed.), pp. 147-168, Academic Press, New York (1987). 
10. R. Miller and Q. F. Stout, Data movement techniques for the pyramid computer, SIAM Com­

put. 16 (1),38-60 (1987). 
11. S. L. Tanimoto, Algorithms for median filtering of images on a pyramid machine, in Comput­

ing Structures for Image Processing (M. J. B. Duff, ed.), pp. 123-141, Academic Press, 
London (1983). 

12. S. L. Tanimoto, Sorting, histogramming, and other statistical operations on a pyramid ma­
chine, in Multiresolution Image Processing and Analysis (A. Rosenfeld, ed.), pp. 136-145, 
Springer-Verlag, Berlin (1984). 

13. Q. F. Stout, Sorting. merging, selecting and filtering on tree and pyramid machines, Proc. 
1983 Int. Conf. Parallel Processing, 1983, pp. 214-221. 

14. Q. F. Stout, Supporting divide-and-conquer algorithms for image processing, J. Parallel Dis­
tribut. Comput. 4, 147-168 (1987). 

15. S. L. Tanimoto, Programming techniques for hierarchical parallel image processors, in Multi­
computers and Image Processing Algorithms and Programs (K. Preston and L. Uhr, eds.), 
pp. 421-429, Academic Press, New York (1982). 

16. R. Miller and Q. F. Stout, Computing convexity properties of images on a pyramid computer, 
Algorithmica 6, 659-684 (1991). 



www.manaraa.com

328 Chapter 10 

17. R. Miller and Q. F. Stout, Simulating essential pyramids, IEEE Trans. Comput. TC-37(12), 
1642-1648 (1988). 

18. W. G. Kropatsch, Rezeptive felder in bildpyramiden, in Mustererkennung 1988 (H. Bunke, 
O. Kiibler, and P. Stucki, eds.), pp. 333-339, Springer-Verlag, Berlin (1988). 

19. W. G. Kropatsch, A pyramid that grows by powers of 2, Pattern Recognition Lett. 3(9), 
315-322 (1985). 

20. P. Meer, Stochastic image pyramids, CVGIP 45, pp. 269-294 (1989). 
21. P. Meer, C. A. Sher, and A. Rosenfeld, The chain pyramid: hierarchical contour processing, 

IEEE Trans. Pattern Anal. Machine Intell. PAMI-12(4) 363-376 (1990). 
22. P. Meer, S. Jiang, E. S. Baugher, and A. Rosenfeld, Robustness of image pyramids under 

structural perturbations, CVGIP 44, 307-331 (1988). 
23. A. Montanvert, P. Meer, and A. Rosenfeld, Hierarchical image analysis using irregular tessel­

lations, IEEE Trans. Pattern Anal. Machine Intell. PAMI-13(4) 307-316 (1991). 
24. J. M. Jolion and A. Montanvert, The adaptive pyramid: a framework for 2D image analysis, 

CVGIP: Image Understanding 55(3), 339-348 (1992). 
25. S. Peleg, O. Federbush, and R. Hummel, Custom-made pyramids, in Parallel Computer Vi­

sion (L. Ubr, ed.), pp. 125-147, Academic Press, New York (1987). 
26. Ph. Clermont, Methodes de programmasion de machine parallele pyramidale. applications en 

segmentation d'images, These de Doctorat, Universite Paris VII (1990). 
27. Ph. Clermont and A. Merigot, Efficient parallel pyramidal primitives for image analysis, in 

Progress in Image Analysis and Processing II (V. Cantoni, M. Ferretti, S. Levialdi, R. Ne­
grini, and R. Stefanelli, eds.), pp. 544-550, World Scientific, Singapore (1992). 

28. F. Glazer, Multilevel relaxation in low-level computer vision, in Multiresolution Image Pro­
cessing and Analysis (A. Rosenfeld, ed.), pp. 312-330, Springer-Verlag, Berlin (1984). 

29. W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, New York (1985). 
30. A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Compo 31, 

333-390 (1977). 
31. D. Terzopoulos, Multilevel computational processes for visual surface reconstruction, CVGIP 

24, 52-96 (1983). 
32. D. Terzopoulos, Image analysis using multigrid relaxation methods, IEEE Trans. Pattern 

Anal. Machine Intell. PAMI-8(2), 129-139 (1986). 
33. D. Gannon, On the structure of parallelism in a highly concurrent PDE solver, Proc. 7th 

Symp. Computer Arithmetics, 1985, pp. 252-259. 
34. P. Burt, T. H. Hong, and A. Rosenfeld, Segmentation and estimation of image region proper­

ties through cooperative hierarchical computation, IEEE Trans. Syst., Man, Cybernet. SMC-
11, 802-804 (1981). 

35. T. Hong, K. A. Narayanan, S. Peleg, A. Rosenfeld, and T. Silberberg, Image smoothing and 
segmentation by multiresolution pixel linking: further experiments and extensions, IEEE 
Trans. Syst., Man, Cybernet. SMC-12(5), 611-622 (1982). 

36. J. M. Cibulskis and C. R. Dyer, An analysis of node linking in overlapped pyramids, IEEE 
Trans. Syst., Man, Cybernet. SMC-14(3), 424-436 (1984). 

37. T. Hong and A. Rosenfeld, Compact region extraction using weighted pixel linking in a pyra­
mid, IEEE Trans. Pattern Anal. Machine Intell. PAMI-6(2), 222-229 (1984). 

38. M. Spann, Figure/ground separation using stochastic pyramid relinking, Pattern Recognition 
24(10), 993-1002 (1991). 

39. A. P. Witkin, Scale-space filtering, Proc. 7th Int. Joint Conf. Artificial Intelligence, 1983, 
pp. 1019-1021. 



www.manaraa.com

Pyramidal Tools and Applications 329 

40. A. L. Yuille and T. A. Poggio, Scaling theorems for zero crossings, IEEE Trans. Pattern 
Anal. Machine Intell. PAMI·8(2), 15-25 (1986). 

41. T. Hong, M. Shneier, and A. Rosenfeld, Border extraction using linked edge pyramids, IEEE 
Trans. Syst., Man, Cybernet. SMC·12(5), 660-668 (1982). 

42. T. H. Hong and M. Shneier, Extracting compact objects using linked pyramids, IEEE Trans. 
Pattern Anal. Machine Intell. PAMI·6(2), 229-237 (1984). 

43. R. Hartley, A Gaussian-weighted multiresolution edge detector, CVGIP 30,70-83 (1985). 
44. P. Burt, Fast filter transforms for image processing, CVGIP 16, 20-51 (1981). 
45. R. Park and P. Meer, Edge-preserving artifact-free smoothing with image pyramids, Pattern 

Recognition Lett. 12(9),467-475 (1991). 
46. A. Rosenfeld and A. Sher, Detection and delineation of compact objects using intensity pyra­

mids, Pattern Recognition 21, 147-151 (1988). 
47. C. A. Sher and A. Rosenfeld, Pyramid cluster detection and delineation by consensus, Pattern 

Recognition Lett. 12(9),477-482 (1991). 
48. P. Meer, D. Mintz, A. Montanvert, and A. Rosenfeld, Consensus vision, Proc. AAAI-90 

Workshop on Qualitative Vision, Boston, MA, 1990, pp. 111-115. 
49. 1. M. 10lion, P. Meer, and A. Rosenfeld, Border delineation in image pyramids by concurrent 

tree growing, Pattern Recognition Lett. 11(2), 107-115 (1990). 
50. L. Van GooI, P. Dewaele, and A. Oosterlinck, Texture analysis anno 1983, CVGIP 29, 

336-357 (1985). 
51. M. Pietikiiinen and A. Rosenfeld, Image segmentation by texture using pyramid node linking, 

IEEE Trans. Syst., Man, Cybernet. SMC·ll(12), 822-825 (1981). 
52. L. I. Larkin and P. Burt, Multi-resolution texture energy measures, Proc. IEEE Comput. Soc. 

Con! CVPR, Washington, DC, 1983, pp. 519-520. 
53. B. P. Kjell and C. R. Dyer, Edge separation and orientation texture measures, Proc. IEEE 

Conf. CVPR, 1985, pp. 306-311. 
54. B. P. Kjell and C. R. Dyer, Segmentation of textured images by pyramid linking, in Pyrami­

dal Systems for Computer Vision (V. Cantoni and S. Levialdi, eds.), pp. 273-288, Springer­
Verlag, Berlin (1986). 

55. S. Peleg, 1. Naor, R. Hartley, and D. Avnir, Multiple resolution texture analysis and classifi­
cation, IEEE Trans. Pattern Anal. Machine Intell. PAMI·6(4), 518-523 (1984). 

56. D. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, CA (1982). 
57. C. Bouman and B. Liu, Multiple resolution segmentation of textured images, IEEE Trans. 

Pattern Anal. Machine Intell. PAMI·13(2), 99-113 (1991). 
58. M. Bister, J. Cornelis, and A. Rosenfeld, A critical view of pyramid segmentation algorithms, 

Pattern Recognition Lett., 11(9), 605-617 (1990). 
59. A. Rosenfeld and G. J. VanderBrug, Coarse-fine template matching, IEEE Trans. Syst., Man, 

Cybernet. SMC·7(2), 104-107 (1977). 
60. R. Y. Wong and E. L. Hall, Sequential hierarchical scene matching, IEEE Trans. Comput. 

C·27(4), 359-366 (1978). 
61. S. L. Tanimoto, Template matching in pyramids, CVGIP 16, 356-369 (1981). 
62. F. Glazer, G. Reynolds, and A. Anandan, Scene matching by hierarchical correlation, Proc. 

IEEE CS Conf. CVPR, Washington, DC, 1983, pp. 432-441. 
63. P. V. C. Hough, Method and means for recognizing complex patterns, U.S. Patent 3069654 

(1962). 
64. D. Ballard, Generalizing the hough transform to detect arbitrary shapes, Pattern Recognition 

13(2), 111-122 (1981). 



www.manaraa.com

330 Chapter 10 

65 H LI, M A Lavm, and R J Le Master, Fast hough transform a hierarchical approach, 
CVGIP 36, 139-161 (1986) 

66 S L Tammoto, From pixels to predicates m pyramid machmes, m From PIXels to Features 
(J C Simon, ed ), pp 383-392, Elsevier, North-Holland (1989) 

67 J M Johon and A Rosenfeld, A O(log n) pyramid Hough transform, TR-2066, Center for 
AutomatIOn Research, Umverslty of Maryland, College Park, MD (1988) 

68 J Pnncen, J Ilhngworth, and J Kittler, A hierarchical approach to Ime extractlon based on 
the hough transform, CVGIP 52,57-77 (1990) 

69 G BonglOvanm, C Guerra, and S Levlaldl, Computmg the Hough transform on a pyramid 
architecture, Machine V,SIOn Appl 3(2), 117-123 (1990) 

70 H Samet, The DeSIgn and AnalysIs of Spatial Data Structures. Addison-Wesley, Readmg, 
MA (1990) 

71 H Samet, AppilcatlOns of Spatial Data Structures Computer GraphIcs. Image Processing. 
and GIS. Addison-Wesley, Readmg, MA (1990) 

72 W G Kropatsch, Curve representatlons m multlple resolutIOn, Pattern RecognitIOn Lett 6(8), 

179-184 (1987) 
73 W G Kropatsch, Ehmmatlon von 'klemen' kurvenstucken m der 2 x 2/2 kurvenpyramlde 

algonthmus und test, DIBAG-Report Nr 25, Instltut fur Dlgltale Blldverarbeltung und Grafik, 
Graz (1987) 

74 K A Narayanan and A Rosenfeld, Approxlmatlon of waweform and contours by one-dimen­
sional pyranud hnkmg, Pattern RecognitIOn 15(5), 389-396 (1982) 

75 H Freeman, Computer processmg of hne-drawmg Images, Comput Surveys 6, 57-97 
(1974) 

76 P Meer, E S Baugher, and A Rosenfeld, ExtractIOn of trend hnes and extrema from 
multlscale curves, Pattern RecognitIOn 21(3),217-226 (1988) 

77 S Connelly and A Rosenfeld, A pyramid algonthm for fast curve extractIOn, Center for 
AutomatIOn Research Tech Report CAR-TR-270, Umverslty of Maryland (1987) 

78 C Arcelh, L P Cordella, and G Sanmtl dl Baja (eds ), V,sual Form AnalysIs and Recogni­
tIOn. Plenum Press, New York (1992) 

79 V Cantom and S Levlaldl, Contour labehng by pyramidal processmg, m Intermediate-Level 
Image Processing (M J B Duff, ed ), pp 181-190, Academic Press, London (1986) 

80 A Bengtsson and J Eklundh, Shape representatIOn by multlscale contour approximatIOn, 
IEEE Trans Pattern Anal Machine Intell PAMI-13(1), 85-93 (1991) 

81 H Zabrodsky, S Peleg, and A Avmr, Hierarchical symmetry, Proc 11th Int Conf Pattern 
RecogmtlOn, Vol C, 1992, pp 9-12 

82 L S DaVIS, Hierarchical generalized Hough transform and hne-segment based Hough trans­
form, Techmcal Report, Umverslty of Texas (1979) 

83 V Cantom, L Carnoh, M Dlam, M Ferretti, L Lombardi, and M Savml, Object recogm­
tlOn and locatIOn by a bottom-up approach m Image AnalYSIS and Processing (V Cantom, V 
DI Gesu, and S Levlaldl, eds ), pp 329-336, Plenum Press, New York (1988) 

84 M-K Wu, ViSUal pattern recogmtlon by moment mvanants, llRE Trans Inform Theory ITS, 
179-187 (1962) 

85 A P Reeves and A Rostampour, Shape analYSIS of segmented objects usmg moments, Conf 
Pattern RecogmtlOn and Image Processmg, Dallas, 1981, pp 171-174 

86 P J Burt, Smart sensmg wlthm a pyramid VISIOn machme, Proc IEEE 76(8), 1006-1015 
(1988) 

87 K R Sloan and S L Tammoto, Progressive refinement of raster Images, IEEE Trans Com­
put C-2S(1l), 871-874 (1979) 



www.manaraa.com

Pyramidal Tools and Applications 331 

88. P. J. Burt and E. H. Adelson, The Laplacian pyramid as a compact image code, IEEE Trans. 
Commun. COM-31(4), 532-540 (1983). 

89. E. H. Adelson, E. Simoncelli, and R. Hingorani, Orthogonal pyramid transforms for image 
coding, SPIE, Vol. 845, Visual Communications and Image Processing II, 1987, pp. 50-
58. 

90. M. G. Albanesi, I. De Lotto, and L. Carrioli, Image compression by the wavelet decomposi­
tion, European Trans. Telecommunications, 3(2),45-54 (1992). 

91. H. Mayer and W. G. Kropatsch, Progressive bildiibertragung mit der 3 x 312 pyramide, in 
Informatik Fachberichte 219: Mustererkennung 1989 (H. Burkardt, K. H. Kohne, and B. 
Neumann, eds.), pp. 160-167, Springer-Verlag, Hamburg (1989). 

92. H. Mayer and W. G. Kropatsch, Kompakte bildkodierung mit der 3 x 3/2 pyramide, in Wis­
senbasierte Mustererkennung (A. Pinz, ed.), pp. 195-210, Oldenbourg, Austria (1989). 

93. A. Singh, Optic Flow Computation, IEEE Computer Society Press, Los Alamitos, CA 
(1991). 

94. A. Verri and T. Poggio, Against quantitative optical flow, Proc. First ICCV, London, 1987, 
pp. 171-180. 

95. E. H. Adelson and J. R. Bergen, Spatio-temporal energy models for the perception of mo­
tion, J. Opt. Soc. Am. A 2(2), 284-299 (1985). 

96. P. Anandan, A unified perspective on computational techniques for the measurement of vi­
sual motion, Proc. 1st ICCV, 1987, pp. 219-230. 

97. B. K. P. Horn and B. Schunck, Determining optical flow, Artif. Intell. 17, 185-203 (1981). 
98. H. H. Nagel, Displacement vectors derived from second order intensity variations in image 

sequences, CVGIP 21,85-117 (1983). 
99. W. Enkelmann, Investigation of multigrid algorithms for the estimation of optical flow fields 

in image sequences, CVGIP 43, 150-177 (1988). 
100. R. Battiti, E. Amaldi, and C. Koch, Computing optical flow across multiple scales: an adap­

tive coarse-to-fine strategy, Int. J. Comput. Vision 6(2), 133-145 (1991). 
101. P. J. Burt, C. Yen, and X. Xu, Multi-resolution flow-through motion analysis, Proc. IEEE 

CS Conf. CVPR, Washington, DC, 1983, pp. 246-252. 
102. P. J. Burt, Multiresolution pyramid architectures for real-time motion analysis, IAPR Work­

shop on Machine Vision Applications, Tokyo, 1990, pp. 317-321. 
103. P. J. Burt, J. R. Berger, R. Hingorani, R. Kolczynski, W. A. Lee, A. Leung, J. Lubin, and 

H. Shvaytser, Object tracking with a moving camera, Proc. IEEE Workshop on Visual Mo­
tion, Princeton, NJ, 1991, pp. 2-12. 

104. P. Anandan and R. Weiss, Introducing a smoothness constraint in a matching approach for 
the computation of displacement fields, Proc. SPIE Intelligent Robots and Computer Vision 
Conf., 521, 1984, pp. 184-194. 

105. R. Bajcsy, R. Lieberson, and M. Reivic, A computerized system for the elastic matching of 
deformed radiographic images to idealized atlas images J. Compo Assoc. Tomography 7(4), 
618-625 (1983). 

106. J. Dengler, Local motion estimation with the dynamic pyramid, in Pyramidal Systems for 
Computer Vision (V. Cantoni and S. Levialdi, eds.), pp. 289-298, Springer-Verlag, Berlin 
(1986). 

107. V. Venkateswar and R. Chellappa, Hierarchical feature based matching for motion corre­
spondence, Proc. IEEE Workshop on Visual Motion, Princeton, NJ, 1991, pp. 280-285. 

108. W. I. Grosky and R. Jain, Region matching in pyramids for dynamic scene analysis, in 
Multiresolution Image Processing and Analysis (A. Rosenfeld, ed.), pp. 331-342, Springer­
Verlag, Berlin (1984). 



www.manaraa.com

332 Chapter 10 

109. K. 1. Hanna, Direct multi-resolution estimation of ego-motion and structure from motion, 
Proc. IEEE Workshop on Visual Motion, Princeton, NJ, 1991, pp. 156-162. 

110. D. Marr and T. Poggio, A computational theory of human stereo vision, Proc. R. Soc. 
London B 204, 1979, pp. 359-365. 

111. J. 1. Clark and P. D. Lawrence, A theoretical basis for diffrequency stereo, CVGIP 35, 
1-19 (1986). 

112. V. Cantoni, A. Griffini, and L. Lombardi, Stereo vision in multi-resolution, in Progress in 
Image Analysis and Processing (V. Cantoni, L. P. Cordelia, S. Levialdi, and G. Sanniti di 
Baja, eds.), pp. 706-713, World Scientific, Singapore (1990). 

113. T. Darell and K. Wohn, Depth from focus using a pyramid architecture, Pattern Recognition 
Lett. 11(12),787-796 (1990). 



www.manaraa.com

Index 

Algorithm complexity, 292-293 

Control environment, 126, 277-287 
across space, 286 
across resolution, 279 
PE autonomy, 125 

Depth, 324-326 
focus, 325 
stereo, 324 

Description, 26; see also Multiresolution 
Detection 

edge, 59, 61; see also Segmentation 
feature, 60 
See also Recognition 

Ego motion, 322 

Foveal vision, 19, 322 

Graph 
centralization, 297 
model feature, 27 

Hierarchical systems 
heterogeneous, 108, 219 

closely coupled, 110 
loosely coupled, 109 

homogeneous, 69, 108 
compact pyramid, 110, 118 
distributed pyramid, 112, 154 
modular 

Image 

definition, 3 
self-organizing, 6 

distribution law, 7 
distribution of settlements, 9 
monetary systems, 8 
natural languages, 10 

compression, 50, 315 
flow diagrams, 60 

Labeling 
contour, 62 
segment, 256 

Languages 
collection oriented, 242 

333 



www.manaraa.com

334 

Languages (cant.) 
parallel constructs, 245-250 
processor oriented, 244 

HCL, 250-263 
PCL, 273-277 
PYR-E,263-273 

Matching, 33, 308, 320 
Motion, 316-324 

analysis, 50, 62, 316 
optic flow field, 317 

correlation and matching, 320 
gradient, 318 

ego motion, 322 
tracking, 21, 62, 322 

Multiresolution 
matching, 33 
representations, 26 

model feature graph, 27 
pattern tree, 27 
syntactic, 28 
wavelet, 35-41 

decomposition, 39 
orthogonality, 39 
quadrature mirror filter, 39, 55 
scaling function, 37 
vector spaces, 37 

Near-neighbor 
access, 121, 215 
operations, 122, 170 

Operators 
AND--Match, 140, 170,251 
cellular logic, 139, 162, 168, 

250 
expanding kernel, 46 
interest, 296 
OR--Match, 141, 170,251 
pyramid generating kernel, 38 

Gaussian, 42, 164 
Laplacian, 48, 164 
Haar,53 

Index 

Performance parameters; see Simulation; 
Topologies 

Planning strategies 
coarse-to-fine, 57 
general, 64 

Pyramid 
adaptive, 296 
custom-made, 297 
dual, 295 
feature, 56 
Gaussian, 41-48, 163 
Haar, 51-55 
Laplacian, 48-51, 163 
overlapped, 87, 294 
stochastic, 296 
See also Hierarchical systems; Topol­

ogies 

Recognition 
classification, 62 
cones, 14 
curve, 312 
line, 310 
shape, 314 

Scan path, 23 
Segmentation, 105, 301, 308 

boundary-based, 59, 302 
object delineation, 304 
region-based, 299 
texture, 306 

Simulation 
performance parameters, 174 
pyramid on hypercube, 192-216 
pyramid on mesh, 175-192 

Systems 
Array/Net, 110, 236-237 
CLIP4,11O 
CM 110, 122, 206-207 
Cm*,99 
DADO, 99 
DAP, 1l0, 222 
EGPA, 112, 155-158 
EMMA, 99 



www.manaraa.com

Index 

GAM, 112, 119, 123, 144-148 
GOP, 57, 162 
HCL: see Systems, PCLIP 
IDA, 110, 226-232 
MPP, 110, 145 
MasPar, 110 
NonVon, 99 
NETRA,99 
PAPIA, 112, 119, 123, 129-139, 

187-190,273 
PASM, 109, 232-236 
PCLIP, 112, 119, 123, 139-144,252 
PIPE, 168-171 
PVM, 163-167,323,326 
SPHINX, 112, 119, 123, 148-154, 

212 
YUPPIE, 125, 190 
WPM, llO, 221-226 

Techniques 
coarse-to-fine, 57 
fine-to-coarse, 34 
multigrid, 26, 118, 299 

Topologies 
hypemet, 89-92 

335 

performance parameters, 71-74, 92-96 
pyramid, 86-89 

bin, 87 
quad,87 

snowflake, 74-77 
star, 77-79 
tree, 79-86 

flip-, 85 
hyper-, 83 
multi-, 84 
pattem-,27 
ringed-, 81 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




